Universidad de Los Andes Facultad de Ciencias Departamento de Matemática Mérida - Venezuela

Estudio de las órbitas acotadas de las funciones cuadráticas para parámetros en el complemento del conjunto de Mandelbrot

Ramírez Matheus Antonio José

Tutor: Leonardo Mora

Índice general

Int	troducción	5
1.	Preliminares	7
	Análisis de las preimagenes del disco $C(0, c)$ por medio de la función $\mathbf{Q}_c(\mathbf{z}) = \mathbf{z^2} + c$	15
3.	Convergencia a 0 del diam (D_{i_1,i_2,\dots,i_n}) cuando $n\to\infty$ para valores de $ c >2$	33
4.	Teorema Principal	47

Introducción

En esta monografía analizaremos la geometría del conjunto formado por los puntos z tales que su orbita por medio de la función compleja $Q_c(z) = z^2 + c$ se mantiene acotada, para valores de |c| > 2. Para ello hemos dividido el trabajo en 4 capítulos cuyos contenidos son:

Capitulo 1 Se darán algunas definiciones que serán utilizadas. Analizaremos la función compleja $Q_c(z) = z^2 + c$ y la función multivaluada $F(w) = \sqrt{w - c}$, también presentaremos el conjunto de Mandelbrot. Además para cada valor de c (|c| > 2) localizaremos el conjunto que queremos estudiar en el interior del disco C(0, |c|).

Capitulo 2 Analizaremos las preimágenes del disco que contiene al conjunto por medio de la función $Q_c(z) = z^2 + c$ y se verificara que dicha preimagen está en el interior del disco C(0, |c|).

Capitulo 3 Se presentan dos caminos para demostrar la convergencia a 0 del diámetro de los "discos" D_{i_1,\dots,i_n} cuando $n\to\infty$. Uno de estos caminos nos servirá para demostrar dicha convergencia para valores de $|c|>\frac{5+\sqrt{24}}{4}$. En el segundo camino introduciremos unas nuevas definiciones que nos ayudaran a demostrar tal convergencia para valores de |c|>2.

Capitulo 4 Expondremos el teorema principal. Definamos el conjunto:

$$\bigwedge_{c} = \{ z \in \mathcal{C} : \text{su orbita por medio de la funcion } Q_{c} \text{ esta acotada} \}.$$

Demostraremos que:

Teorema Principal Sea $c \in \mathcal{C}$ con |c| > 2 entonces \bigwedge_c es un conjunto de Cantor.

Capítulo 1

Preliminares

En este capítulo estudiaremos algunas funciones de variable compleja que serán utilizadas en este trabajo. Luego definiremos algunos conceptos que nos ayudarán a entender cual es nuestro objetivo.

Para comenzar recordemos que una función F de variable compleja z se dice **analítica** (holomórfica) en un conjunto abierto si tiene derivada en todo punto del conjunto.

Observación: Denotaremos el conjunto de numeros complejos como \mathcal{C} .

Definición 1.1 Una Función Multivaluada que denotaremos como F es una asignación de un subconjunto $U \subset \mathcal{C}$ a \mathcal{C} tal que, le asigna más de un valor F(z) a un punto $z \in U$.

Cuando se estudian funciones multivaluadas tomamos solo uno de los valores asignados a cada punto y así se construye una función univaluada (o sea que cada punto del dominio de la función se le asigna un solo valor) a partir de la función multivaluada.

Definición 1.2 Se define una Rama de una función multivaluada

 $F: U \subset \mathcal{C} \to V \subset \mathcal{C}$ como una función univaluada $G: U \to V_1 \subset V$ que sea analítica en su dominio en el que cada punto z tiene asignado uno de los valores de F(z).

Ejemplo: Sea la función $G(w)=w^2$, veamos que está función origina una función multivaluada, en efecto si despejamos z de la ecuación $z=w^2$ obtenemos $z^{1/2}$ y así, sí $z=re^{i\theta}$ es un número complejo no nulo entonces sabemos que $z^{1/2}=\pm\sqrt{r}e^{i\theta}$ tiene dos valores que representan las dos raíces de z y donde θ es el valor principal

 $(-\pi < \theta \le \pi)$ del argumento de z (lo denotaremos arg(z)). Pero si escogemos solo el valor positivo y hacemos:

$$F(z) = \sqrt{r}e^{i\theta/2} \qquad (r > 0, -\pi < \theta < \pi)$$

entonces construimos una rama de la función $z^{1/2}$ que es univaluada y analítica en su dominio. Está rama de la función $z^{1/2}$ es llamada la rama principal (de manera análoga podríamos hacerlo con el valor $-\sqrt{r}e^{i\theta/2}$), además obtenemos que la función $G(w)=w^2$ es tal que F(G(w))=w y G(F(z))=z.

Notemos que para cada α fijo la función

$$F(z) = \sqrt{r}e^{i\theta/2}$$
 $(r > 0, \ \alpha < \theta < \alpha + 2\pi)$

es una rama de $z^{1/2}$.

Análisis de la función multivaluada $f(w) = \sqrt{w - c}$

Notemos que la función $f(w) = \sqrt{w-c}$ es una composición de la traslación Z(w) = w-c con la función bivaluada (o sea que toma dos valores) $H^{\frac{1}{2}}$. Así cada rama de $H^{\frac{1}{2}}$ produce una rama de $(w-c)^{\frac{1}{2}}$. Si $H=Re^{i\theta}$, las ramas de $H^{\frac{1}{2}}$ son:

$$H^{\frac{1}{2}} = \sqrt{R}e^{\frac{i\theta}{2}} \qquad (R > 0, \alpha < \theta < \alpha + 2\pi).$$

En consecuencia si llamamos R = |w - c|, $\theta = arg(w - c)$, construimos la rama principal de $(w - c)^{1/2}$ como:

$$\psi_0(w) = +\sqrt{|w-c|}e^{\frac{iarg(w-c)}{2}} \qquad (-\pi < arg(w-c) < \pi)$$

О

$$\psi_1(w) = -\sqrt{|w - c|}e^{\frac{iarg(w - c)}{2}}$$
 $(-\pi < arg(w - c) < \pi),$

además tenemos que la función $Q_c(z) = z^2 + c$ en dominios distintos es la función inversa de ψ_0 y ψ_1 . Veamos en la Figura 1 que el plano W menos la recta pintada

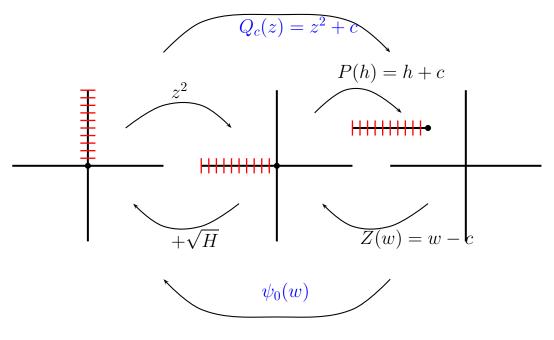


Figura 1

en rojo es transformado por medio de $\psi_0(w)$ al semi-plano derecho del plano Z (y de manera análoga $\psi_1(w)$ manda el plano W menos la recta pintada en rojo al semi-plano izquierdo del plano Z).

Notemos que si tomamos como rama

$$\psi_0(z) = \sqrt{|w - c|} e^{\frac{iarg(w - c)}{2}} \quad (0 < arg(w - c) < 2\pi),$$

entonces el plano W menos la recta pintada en rojo (ver Figura 2) es transformada por medio de ψ_0 al semi-plano de arriba del plano Z.

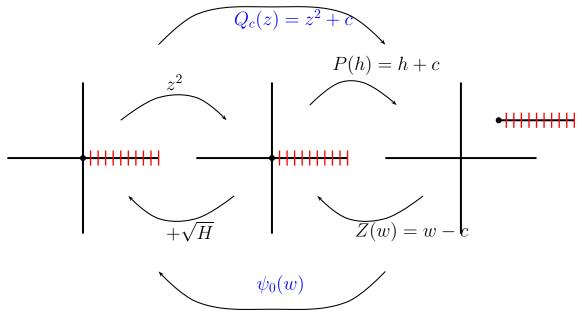


Figura 2

Conjunto de Mandelbrot

Definición 1.3 Un conjunto \wedge es un conjunto de Cantor si es cerrado, totalmente disconexo y un conjunto perfecto. Un conjunto es totalmente disconexo si no contiene "bolas" y un conjunto es perfecto si cada punto en el es un punto de acumulación del conjunto.

Definición 1.4 Se define la órbita de $z \in \mathcal{C}$ por medio de la función $Q_c(z) = z^2 + c$ como el conjunto $\{z, Q_c(z), Q_c^2(z), ..., Q_c^n(z), ...\}$, donde $Q_c^{n+1}(z) = Q_c \circ Q_c^n(z)$.

Definición 1.5 Un punto $z \in \mathcal{C}$ es llamado punto fijo de la función $\mathbf{Q_c}(\mathbf{z})$ si $Q_c(z) = z$. Y un punto z para el cual se tiene $Q_c^p(z) = z$ para algún $p \in Z^+$, se dice que es un punto periódico de período n.

Los puntos periódico se pueden clasificar según el valor de $\lambda = |(Q_c^p)'(z)|$ de la siguiente manera:

 $0 < \lambda < 1$ se dice que z es un punto atractor

 $\lambda > 1$, z es un punto repulsor

 $\lambda = 0$, z es un punto superatractor

 $\lambda = 1$, z es un punto indiferente.

Definición 1.6 Sea $P: \mathcal{C} \to \mathcal{C}$ un polinomio. Se define el conjunto **Julia**, como la clausura del conjunto de puntos repulsores de P (y lo denotaremos J(P)).

En matemática algunos conjuntos son generados por iteraciones, o sea repetir un proceso varias veces y por lo general este proceso es la aplicación de una función y para nuestro objetivo será la función compleja $Q_c(z) = z^2 + c$.

Definición 1.7 Se define el conjunto de **Mandelbrot** como el subconjunto del plano complejo definido por:

$$M = \{c \in \mathcal{C} \ : \ la \ sucesion \ Q_c{}^n(0) \ no \ converge \ a \ infinito\}$$
 o equivalentemente

$$M = \{c \in \mathcal{C} : J_c \text{ es conexo}\}.$$

Una ilustración de este conjunto se muestra en la Figura 3.

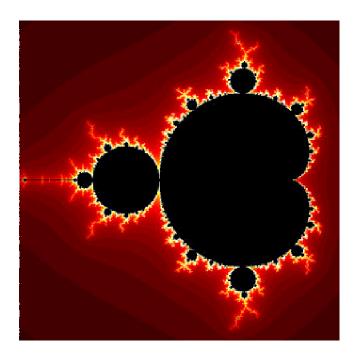


Figura 3

De manera que estamos ya preparados para conocer cual es nuestro objetivo. Definamos el conjunto:

$$\bigwedge_{c} = \{ z \in \mathcal{C} : \text{su orbita por medio de la funcion } Q_{c} \text{ esta acotada} \}.$$

Demostraremos que:

Teorema Principal Sea $c \in \mathcal{C}$ con |c| > 2 entonces \bigwedge_c es un conjunto de Cantor.

Afirmamos aunque no lo demostraremos que este conjunto es el conjunto de **Julia** para valores de |c| > 2. Así estaremos demostrando que el conjunto de Julia es un conjunto de Cantor para |c| > 2 y además que el conjunto de Mandelbrot esta en el disco de centro 0 y radio 2.

Observación: La finalización de la demostración de un teorema o una proposición lo denotaremos como \maltese y definiremos un disco de centro 0 y radio r como el conjunto $S = \{z \in \mathcal{C}; |z| \leq r\}$, lo denotaremos C(0, r).

Localización del conjunto \bigwedge_{c}

Proposición 1.1 Sea |c| > 2 y supongamos que $|z| \ge |c|$, entonces $Q_c^n(z) \to \infty$ cuando $n \to \infty$.

Demostración: Sea $|z| = r \ge |c| > 2$. Entonces Q_c transforma la frontera disco de radio r centrado en 0 en la frontera del disco de radio r^2 centrado en c. En efecto, sea |z| = r y veamos que:

$$|Q_c(z) - c| = |(z^2 + c) - c| = |z^2| = |z|^2 = r^2.$$
 (1)

Como r > 2 entonces $r^2 > 2r$.

Afirmamos que el disco C(0,r) está en el interior del disco $C(c,r^2)$. Para verificar esto, tomemos $z \in C(0,r)$ y veamos que

$$|z - c| \le |z| + |c| \le r + r < r^2$$

así $C(0,r) \subset C(c,r^2)$.

Luego por (1) y debido a que el disco C(0,r) esta en el interior de $C(c,r^2)$ podemos afirmar que $|Q_c(z)| > r$, en consecuencia $|Q_c(z)| > |z| \quad \forall |z| \ge |c|$.

Demostremos ahora que $|Q_c^n(z)| \to \infty$ cuando $n \to \infty$.

Afirmamos que $|Q_c^{n}(z)| > |c| (|c| - 1)^{2^{n-1}} \quad \forall n.$

Caso n = 1. Veamos que:

$$|z^2 - c + c| \le |z^2 + c| + |c|$$

así,

$$|z^2 + c| \ge |z|^2 - |c|$$

luego

$$|Q_c(z)| = |z^2 + c| \ge |z|^2 - |c| \ge |c|^2 - |c| = |c|[|c| - 1] \quad (|z| \ge |c|).$$

Por tanto es cierto cuando n = 1. Supongamos que es cierto para n - 1 esto es

$$|Q_c^{n-1}(z)| > |c| (|c|-1)^{2^{n-2}},$$

y demostremos que es cierto para el caso n. En efecto:

$$|{Q_c}^n(z)| = |Q({Q_c}^{n-1}(z))| = |({Q_c}^{n-1}(z))^2 + c| \ge |{Q_c}^{n-1}(z)|^2 - |c| > |c|^2 \; (|c|-1)^{2^{n-2+1}} - |c|$$

siguiendo que $|c|^2 (|c|-1)^{2^{n-2+1}} - |c| = |c| [|c| (|c|-1)^{2^{n-1}} - 1].$ Ahora veamos que

$$|c| (|c| - 1)^{2^{n-1}} - 1 > (|c| - 1)^{2^{n-1}}$$

$$|Q_c^n(z)| > |c| (|c| - 1)^{2^{n-1}}.$$

Por tanto es cierto para el caso n, así podemos concluir que

$$|Q_c^n(z)| > |c| (|c| - 1)^{2^{n-1}} \ \forall n.$$

Luego tomando límite cuando $n \to \infty$ en la ecuación anterior obtenemos que:

$$\lim_{n \to \infty} |Q_c^n(z)| > \lim_{n \to \infty} |c| (|c| - 1)^{2^{n-1}}$$

pero

$$\lim_{n \to \infty} |c| (|c| - 1)^{2^{n-1}} = \infty$$

así,

$$\lim_{n \to \infty} |Q_c^n(z)| = \infty .$$

De manera que concluimos por la proposición anterior que el conjunto \bigwedge_c esta en el interior del disco de centro 0 y radio |c|.

$\bigwedge_{\mathbf{c}}$ es un conjunto invariante por medio de la función $\mathbf{Q}_{\mathbf{c}}(\mathbf{z})$

Sea $z\in \bigwedge_c$ entonces su orbita se mantiene acotada para valores de |c|>2. Veamos que $Q_c(z)\in \bigwedge_c$: En efecto, ya que la sucesión

$$z, Q_c(z), Q_c^2(z), ..., Q_c^n(z), ..., Q_c \circ Q_c^n(z)...$$
 1)

se mantiene acotada y la sucesión

$$Q_c(z), Q_c^2(z), ..., Q_c^n(z), ..., Q_c \circ Q_c^n(z)...$$

es una cola de la sucesión 1), de manera que la orbita de $Q_c(z)$ se mantiene acotada para valores de |c|>2. Por tanto $Q_c(z)\in \bigwedge_c$.

Capítulo 2

Análisis de las preimagenes del disco C(0, |c|) por medio de la función $Q_c(z) = z^2 + c$

Como ya vimos en el capitulo 1 para cada c (|c|>2) el conjunto Λ_c está en el interior del disco C(0,|c|) y además sabemos que si $z \in \Lambda_c$ sus iteradas por medio de la funcion $Q_c(z)$ tambien pertenecen a Λ_c entonces sus iteradas tambien estan en el interior del disco C(0,|c|) de manera que trabajaremos hallando la preimagen de C(0,|c|) por medio de la funcion $Q_c(z)$.

Proposición 2.1 Sea γ la preimagen del disco de centro 0 y radio |c| por medio de la función compleja $Q_c(z) = z^2 + c$ entonces,

- 1. " γ tiene forma de ocho".
- 2. γ está en el interior del disco de centro cero y radio |c|, además los puntos que están en el complemento de γ y en el interior de C(0,|c|) sus iteradas están en el exterior de C(0,|c|).

Demostración:

1) Afirmamos: " γ tiene forma parecida a un ocho
" (ver Figura 4).

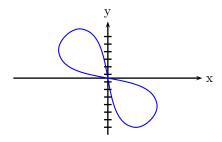


Figura 4

Sea $w \in C(0, |c|)$, sabemos que w proviene de la función $Q_c(z) = z^2 + c$ de manera que $w = z^2 + c$, despejando obtenemos que $z = \sqrt{w - c}$ la cual es la función analizada en el capitulo 1, asi si suponemos que "c" se encuentra en el semiplano izquierdo de la frontera del disco C(0, |c|) definimos la rama principal de esta función como

$$z = \psi_0(w) = \sqrt{|w - c|} e^{i\frac{arg(w - c)}{2}}$$
$$-\pi < arg(w - c) < \pi$$
$$z = \psi_1(w) = -\sqrt{|w - c|} e^{i\frac{arg(w - c)}{2}}.$$

Observación: Si "c" se encuentra en el semiplano derecho entonces trabajariamos con la rama $\psi_0(w)$ y $\psi_1(w)$ con el $0 < arg(w-c) < 2\pi$, en tal caso el procedimiento es el mismo.

Así:

- a) Si w=c entonces existe una sola preimagen ya que $z=\sqrt{w-c}=\sqrt{c-c}=0$ así z=0.
- b) Si $w \neq c$ existen dos preimagen dadas por $\psi_0(w)$ y $\psi_1(w)$ respectivamente.

Para obtener lo deseado observemos como se mueve el radio vector de $z = \psi_0(w)$ y $z = \psi_1(w)$ cuando w se desplaza a lo largo de la frontera de C(0, |c|). Cuando w = c sabemos que z = 0 y cuando $w \neq c$, observemos que si $w = |c|e^{i\theta_w}$ y $c = |c|e^{i\theta c}$ entonces los |z| estan dados por la función

$$V(\theta_{w}) = \sqrt{|w - c|} = \sqrt{|c|e^{i\theta_{w}} - |c|e^{i\theta_{c}}} = \sqrt{|c|}\sqrt{|e^{iw_{\theta}}||1 - \frac{e^{i\theta_{c}}}{e^{i\theta_{w}}}|}$$

$$= \sqrt{|c|}\sqrt{1 - e^{i(\theta_{c} - \theta_{w})}} \quad \text{ya que} \quad e^{i(\theta_{c} - \theta_{w})} = \frac{e^{i\theta_{c}}}{e^{i\theta_{w}}} \text{ y } |e^{i\theta_{w}}| = 1$$

$$= \sqrt{|c|}\sqrt{|1 - \cos(\theta_{c} - \theta_{w}) + i\sin(\theta_{c} - \theta_{w})|} \quad (e^{i\theta} = \sin\theta + i\cos\theta)$$

$$= \sqrt{|c|}\sqrt[4]{(1 - \cos(\theta_{c} - \theta_{w}))^{2} + \sin^{2}(\theta_{c} - \theta_{w})} \quad (|z| = \sqrt{x^{2} + y^{2}})$$

$$= \sqrt{|c|}\sqrt[4]{(1 - 2\cos(\theta_{c} - \theta_{w}) + \cos^{2}(\theta_{c} - \theta_{w}) + \sin^{2}(\theta_{c} - \theta_{w})}$$

$$= \sqrt{|c|}\sqrt[4]{(2 - 2\cos(\theta_{c} - \theta_{w})}. \quad (1)$$

Para ver la gráfica de (1) vemos que la función $V(\theta_w)$ tambien depende del valor de |c| y de θ_c .

Veamos donde varia $\theta_c - \theta_w$ (ver Figura 5),

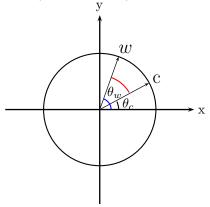


Figura 5

observamos que cuando w recorre la frontera del disco C(0,|c|) entonces $\theta_c - \theta_w$ varia entre

$$\theta_c \le \theta_c - \theta_w \le \theta_c + 2\pi.$$

De manera que en cualquier lugar que se encuentre c en el disco C(0, |c|), el ángulo $\theta_c - \theta_w$ estará en un intervalo de longitud 2π . Así para valores de |c| > 2,

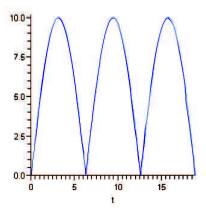


Figura 6

obtenemos (ver Figura 6) que los valores de |z| llegan a un máximo y a un mínimo en cualquiera de los intervalos de longitud 2π , asi si restringimos nuestro análisis a uno de los intervalos de longitud 2π (debido a que nuestra funcion es periódica de periodo 2π) vemos que la función $V(\theta_w)$ alcanza un mínimo en z=0 y luego la función alcanza un máximo que depende del valor |c| para así volver nuevamente al mínimo en z=0.

Por ultimo, veamos cual es la abertura del "ocho". Para ello analizaremos donde varía el arg(z) cuando w se mueve a través de la frontera de C(0,|c|). Así,

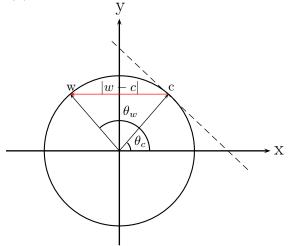


Figura 7

cuando w recorre la frontera del disco C(0,|c|) (ver Figura 7) el arg(w-c) varía

con respecto a l de 0 a π .

Luego trasladando el vector w-c al origen obtenemos que

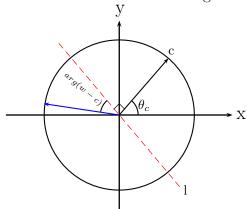


Figura 8

el arg(w-c) con respecto al eje x cumple con (ver Figura 8)

$$\theta_c + \frac{\pi}{2} < arg(w - c) < \theta_c + \frac{3\pi}{2}.$$

Así dividiendo entre 2 obtenemos que $\frac{arg(w-c)}{2}$ con respecto al eje x cumple con

$$\frac{\theta_c}{2} + \frac{\pi}{4} < \frac{arg(w-c)}{2} < \frac{\theta_c}{2} + \frac{3\pi}{4}$$

concluyendo así que los argumentos de los z están dentro de un cono de abertura $\frac{\pi}{2}$ (ver Figura 9).

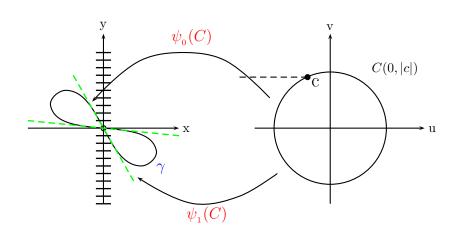


Figura 9

Lo cual demuestra que γ tiene la forma deseada.

2) γ está en el interior del disco de centro cero y radio |c| (ver Figura 10) además los puntos que están en el complemento de γ y en el interior de C(0,|c|) sus iteradas están en el exterior de C(0,|c|).

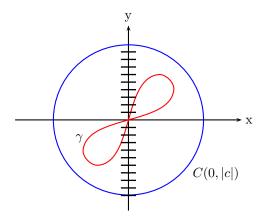


Figura 10

Sea $z \in \gamma$ y supongamos por reducción al absurdo que $|z| \ge |c|$, entonces por la proposición 1.1 su primera iterada estaría fuera de C(0,|c|), pero esto es absurdo ya que z es preimagen de un $w \in C(0,|c|)$. Por tanto $|z| < |c| \ \forall z \in \gamma$, así $\gamma \subset C(0,|c|)$.

Veamos ahora que los puntos que están en el complemento de γ y en el interior de C(0,|c|) sus iteradas están en el exterior de C(0,|c|). En efecto, ya que si suponemos que su primera iterada está dentro del disco C(0,|c|) entonces su preimagen estuviera dentro de γ pero esto es $(A \subset B \Longrightarrow Q_c^{-1}(A) \subset Q_c^{-1}(B))$ absurdo ya que lo estamos tomando entre γ y C(0,|c|) por consiguiente las iteradas de estos puntos están en el exterior de C(0,|c|).

Seleccionemos ahora r < |c| tal que γ esté contenido en el interior del disco C(0,r) (esto es posible ya que γ es compacta y además está en el interior del disco C(0,|c|)) y demostremos que:

Proposición 2.2 Sea C = C(0,r) el disco que está en el interior de C(0,|c|) y contiene a γ entonces

1.
$$\bigwedge_c = \bigcap_{n=1}^{\infty} Q_c^{-n}(C).$$

2. $Q_c^{-n}(C)$ está formado por la unión de 2^n "discos".

Demostración:

1)
$$\bigwedge_c = \bigcap_{n=1}^{\infty} Q^{-n}(C).$$

Sea $p \in \bigwedge_{c}^{n-1}$, entonces por la proposiccion 1.1 sus iteradas por medio de la función Q_c están en el interior de C(0, |c|). Lo cual significa que

$$p, Q_c(p) = w_0, Q_c^2(p) = w_1, Q_c^3(p) = w_2, \dots, \subset C(0, |c|)$$

de manera que obtenemos

$$\psi_0(w_0) = p, \ \psi_0(w_1) = Q_c^{\ 1}(p), \ \psi_0(w_2) = Q_c^{\ 2}(p), \dots, \subset \gamma \subset C$$

(esto se debe a que la preimagen de C es γ y además ψ_0 y Q_c son funciones inversas),

por ende
$$p \in \bigcap_{n=1} Q^{-n}(C)$$
.

Por otra parte si $p \in \bigcap_{n=1}^{\infty} Q^{-n}(C)$ entonces $p, Q_c(p), Q_c^2(p), \ldots, \subset C$ y

$$C \subset C(0,|c|)$$
 así $p \in \bigwedge_c$. Por consiguiente tenemos que $\bigwedge_c = \bigcap_{n=1}^{\infty} Q_c^{-n}(C)$.

2) $Q_c^{-n}(C)$ está formado por la unión de 2^n "discos"

Verifiquemos que $Q_c^{-1}(C)$ consiste de la unión de dos "discos".

En efecto, ya que cuando w recorre la frontera del disco C entonces su preimagen forma la frontera de un "disco" D_0 (homeomorfo a un disco) por medio de la función analítica ψ_0 , de manera análoga se forma la frontera de un segundo "disco" D_1 por medio de la función analítica ψ_1 . Además, tenemos que $D_0 = \psi_0(C) \subset \psi_0(C(0,|c|))$ y $D_1 = \psi_1(C) \subset \psi_1(C(0,|c|))$ ($A \subset B \Longrightarrow \psi_0(A) \subset \psi_0(B)$).

Así $Q_c^{-1}(C)$ está formado por la unión de dos "discos" que son $\psi_{i_1}(C) = D_{i_1}$ donde $i_1 = 0, 1$ (ver Figura 11).

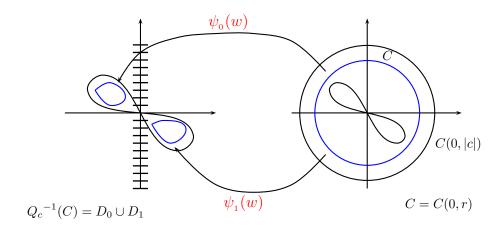


Figura 11

Del mismo modo cada uno de estos "discos" generan dos "discos" más, uno por $\psi_0(w)$ y otro por $\psi_1(w)$. Llegandose así a que $Q_c^{-2}(C)$ esta compuesto por la unión de 2^2 "discos" que son

 $\psi_{i_1} \circ \psi_{i_2}(C) = D_{i_1,i_2}$ donde $i_1, i_2 = 0, 1$. Observemos que

$$Q_c^{-1}(C) \qquad Q_c^{-2}(C)$$

$$\swarrow \psi_0(\psi_0(C)) = D_{0,0}$$

$$\searrow \psi_1(\psi_0(C)) = D_{1,0} \qquad \text{Formandose así}$$

$$\swarrow \psi_0(\psi_1(C)) = D_{0,1} \qquad 2^2 \text{ "discos" (ver Figura 12).}$$

$$\searrow \psi_1(\psi_1(C)) = D_{1,1}$$

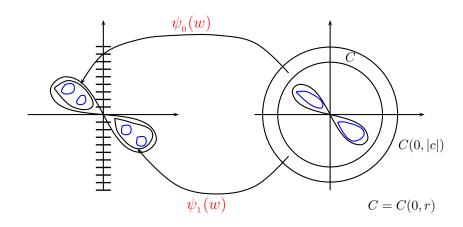


Figura 12

Igualmente $Q_c^{-3}(C)$ está formado por la unión 2^3 "discos" que son $\psi_{i_1} \circ \psi_{i_2} \circ \psi_{i_3}(C) = D_{i_1,i_2,i_3}$ donde $i_1,i_2,i_3=0,1$.

$$\psi_{0}(\psi_{0}(C)) \qquad \qquad \psi_{0}(\psi_{0}(\psi_{0}(C))) = D_{0,0,0} \qquad \qquad \swarrow \qquad \psi_{0}(\psi_{1}(C)) = D_{0,0,1} \\
\searrow \qquad \psi_{1}(\psi_{0}(\psi_{0}(C))) = D_{1,0,0} \qquad \qquad \searrow \qquad \psi_{0}(\psi_{1}(C)) \qquad \searrow \qquad \psi_{1}(\psi_{0}(\psi_{1}(C))) = D_{1,0,1} \\
\psi_{1}(\psi_{0}(C)) \qquad \qquad \swarrow \qquad \psi_{0}(\psi_{1}(\psi_{0}(C))) = D_{0,1,0} \qquad \qquad \swarrow \qquad \psi_{0}(\psi_{1}(C)) = D_{0,1,1} \\
\searrow \qquad \psi_{1}(\psi_{1}(\psi_{0}(C))) = D_{1,1,0} \qquad \qquad \searrow \qquad \psi_{1}(\psi_{1}(D)) \qquad \searrow \qquad \psi_{1}(\psi_{1}(\psi_{1}(C))) = D_{1,1,1}.$$

Continuando este proceso llegamos a que $Q_c^{-n}(C)$ esta formado por la unión de 2^n "discos." En efecto, ya que que $Q_c^{-n+1}(C)$ esta formado por la unión de 2^{n-1} "discos," y cada uno me genera dos discos más, así $Q_c^{-n}(C)$ estará formado $22^{n-1}=2^{n-1+1}=2^n$ "discos" que era lo deseado.

Concluyendo que $Q_c^{-n}(C)$ está formado por la unión de 2^n "discos" definidos como

$$\psi_{i_1} \circ ... \circ \psi_{i_n}(C) = D_{i_1,...,i_n} \text{ donde } i_1,...,i_n = 0,1 .$$

Observación: De ahora en adelante cuando hablemos de la funcion $\psi_{i_1} \circ ... \circ \psi_{i_n}$ entenderemos que los indices $i_1, ..., i_n$ estan en el conjunto $A = \{0, 1\}$ y cuando hablemos de un "disco" de $Q_c^{-n}(C)$, osea un "disco" $D_{i_1,...,i_n}$ entenderemos que los indices estan en el conjunto A. Tambien escribiremos solamente discos sin comillas para referirnos a los conjuntos homeomorfos a un disco $D_{i_1,...,i_n}$.

Proposición 2.3 Sea $|c| > \frac{5 + \sqrt{24}}{4}$. Entonces existe un disco C(0,r) tal que $\gamma \subset C(0,r) \subset C(0,|c|)$ y además $C(0,r) \cap C(c,1/4) = \emptyset$.

Demostración:

Para demostrar que podemos hallar un disco C(0,r) con las condiciones que indica el enunciado de la proposición comenzaremos respondiendo a las siguientes preguntas:

- a) ¿ Cuál es el máximo valor que toma $|\psi_{i_1}(w)|$ cuando w esta en la frontera de C(0,|c|)?
- b) ¿ Dónde estará $\psi_{i_1}(C(0,|c|))$ en comparación con C(c,1/4) para valores de $z=\psi_{i_1}(w)$ ($w\in C(0,|c|)$) cercanos a nuestro máximo?
- a) Para responder nuestra primera pregunta veamos cual es el máximo radio vector de los puntos en la frontera de γ . Sabemos que dichos puntos provienen de la frontera de C(0,|c|) por medio de la función $\psi_{i_1}(w)$ y ademas conocemos cual es la función que nos genera |z|

$$|z| = \sqrt{|w - c|} = \sqrt{|c|} \sqrt[4]{2 - 2\cos(\theta_c - \theta_w)}.$$

Sabemos que $-1 \le \cos(\theta_c-\theta_w) \le 1$, de manera que $0 \le 2-2\cos(\theta_c-\theta_w) \le 4$ y así obtenemos

$$0 \le \sqrt{|c|} \sqrt[4]{2 - 2\cos(\theta_c - \theta_w)} \le \sqrt{2}\sqrt{|c|}.$$

En consecuencia de la ecuación anterior el máximo radio vector |z| va ser alcanzado en $\sqrt{2}\sqrt{|c|}$.

Observación: Denotaremos como z_m el vector de máximo |z|.

b) Continuando con nuestra segunda pregunta, verifiquemos que para valores de $|c| > \frac{5+\sqrt{24}}{4}$ podemos probar $i\sqrt{|c|}\sqrt{2} < |c| - 1/4?$

Para ello definamos $f(|c|) = \sqrt{|c|}\sqrt{2}$ y g(|c|) = |c| - 1/4 para $|c| > \frac{5 + \sqrt{24}}{4}$ y veamos que

$$f(c) = g(c) o sea$$

$$\sqrt{|c|}\sqrt{2} = |c| - 1/4$$

$$(\sqrt{|c|}\sqrt{2})^2 = (|c| - 1/4)^2$$

$$2|c| = |c|^2 - \frac{|c|}{2} + \frac{1}{16} continuando que$$

$$|c|^2 - \frac{5}{2}|c| + \frac{1}{16} = 0$$

cuyas soluciones son

$$|c| = \frac{\frac{5}{2} \pm \sqrt{\frac{25}{4} - \frac{1}{4}}}{2}$$

(esto viene de la ecuación $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ que se usa para buscar las soluciones de polinomios cuadráticos)

$$|c| = \frac{\frac{5}{2} \pm \frac{\sqrt{24}}{2}}{2}$$

$$|c| = \frac{5 \pm \sqrt{24}}{4} \Longrightarrow |c|_1 = \frac{5 + \sqrt{24}}{4} \approx 2,47.$$

De manera que si $|c| > \frac{5 + \sqrt{24}}{4}$ entonces tenemos que $\sqrt{|c|}\sqrt{2} < |c| - 1/4$ y así $\gamma \cap C(c, 1/4) = \emptyset$, por tanto podemos hallar el disco C(0, r) tal que $\gamma \subset C(0, r) \subset$

C(0,|c|) y además cumple que $C(0,r) \cap C(c,1/4) = \emptyset$.

Verifiquemos que encontrar un "disco" (homeomorfo a un disco) que cumplan con las condiciones de la proposicion 2.3 para valores de $5+\sqrt{24}$

$$2<|c|<rac{5+\sqrt{24}}{4}$$
 no es posible

Para verificar que no es posible obtener tal disco para valores de $\mathbf{2}<|\mathbf{c}|<\frac{\mathbf{5}+\sqrt{\mathbf{24}}}{\mathbf{4}}$ se verificara como estará el $arg(z_m)$ en comparación con θ_c y ello nos ayudara ver sí C(c,1/4) se intersecta con γ (ver Figura 13).

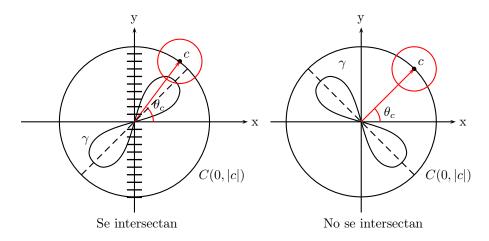


Figura 13

Para ello veamos en la Figura 14 que cuando w recorre la frontera del disco C(0,|c|) el argumento del vector w-c con mayor magnitud estará en $\frac{\pi}{2}$ con respecto a l,

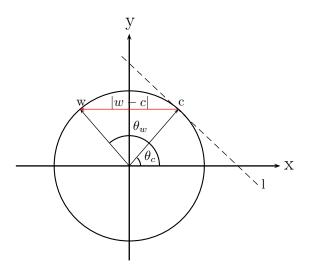


Figura 14

por tanto el argumento de mayor radio vector $\sqrt{|w-c|}$ va ser tomado en $\pi/2$ con respecto a l.

Así el $arg(z_m)$ con respecto a l será el argumento del vector de mayor $\sqrt{|w-c|}$ dividido entre 2, o sea $\frac{\pi}{4}$.

Pero como se había demostrado trasladando nuestro problema al origen (ver Figura 15), los argumentos de los vectores w-c con respecto al eje x cumplían con

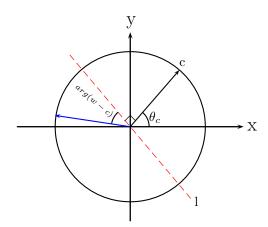


Figura 15

$$\theta_c + \frac{\pi}{2} < arg(w - c) < \theta_c + \frac{3\pi}{2}$$

y así obteníamos que

$$\frac{\theta_c}{2} + \frac{\pi}{4} < \frac{arg(w-c)}{2} < \frac{\theta_c}{2} + \frac{3\pi}{4}.$$

por tanto el $arg(z_m)$ con respecto al eje x sera

$$\frac{\theta_c}{2} + \frac{\pi}{4} + \frac{\pi}{4} = \frac{\theta_c}{2} + \frac{\pi}{2}.$$

Ahora veamos si $\frac{\theta_c}{2} + \frac{\pi}{2}$ esta lejos o cerca de θ_c (para valores de θ_c). Si $\theta_c = \frac{\pi}{4}$ entonces nos queda que

$$argz_m = \frac{\theta_c}{2} + \frac{\pi}{2} = \frac{\pi}{8} + \frac{\pi}{2} = \frac{5\pi}{8}$$
 (ver Figura 16)

.

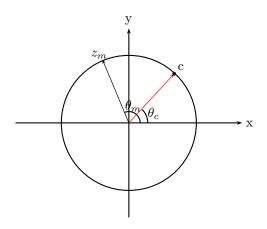


Figura 16

Si
$$\theta_c = 0$$
 entonces $argz_m = \frac{\pi}{2} = \frac{\pi}{2}$ (ver Figura 17).

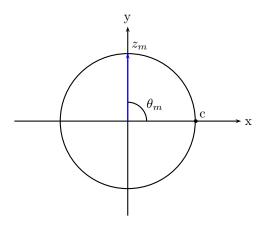


Figura 17

De manera que para $\theta_c=\frac{\pi}{4}$ y $\theta_c=0$ el argumento $\frac{\theta_c}{2}+\frac{\pi}{2}$ no va estar cerca de θ_c .

Luego si $\theta_c = \pi$ entonces $\frac{\theta_c}{2} + \frac{\pi}{2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi$, con lo que θ_c y $\frac{\theta_c}{2} + \frac{\pi}{2}$ coinciden (ver Figura 18).

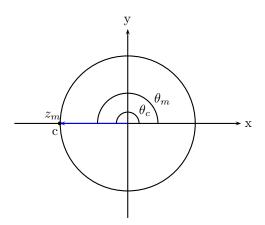


Figura 18

Y además si θ_c esta cerca de π entonces $\frac{\theta_c}{2} + \frac{\pi}{2}$ esta cerca de θ_c (ver Figura 19).

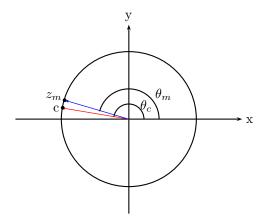


Figura 19

De manera que podemos concluir que si el ángulo del vector c esta cerca o coincide con π entonces $\gamma \cap C(c,1/4) \neq \emptyset$, de manera que nuestro intento de encontrar un "disco" para valores de $2 < |c| < \frac{5+\sqrt{24}}{4}$ no es posible.

Observación: Denotaremos el ínfimo y el supremo de un conjunto A con la notación $\inf(A)$ y $\sup(A)$.

Proposición 2.4 Sea
$$|c| > \frac{5 + \sqrt{24}}{4}$$
 y $d = minimo\{n, h\}$ donde $n = \inf(\{|z|, z \in D_0\})$ y $h = \inf(\{|z|, z \in D_1\})$, entonces $d > \frac{1}{2}$.

Demostración:

Para demostrar que $n = \inf\{|z|, z \in D_0\}$ y $h = \inf\{|z|, z \in D_1\}$ son estrictamente mayores que $\frac{1}{2}$ tomemos el disco de radio 1/2 centrado en el origen C(0, 1/2).

Notemos que los puntos z tales que $|Q_c{'}(z)| \leq 1$ son los puntos que están en el disco C(0,1/2), ya que $|Q_c{'}(z)| = |2z|$ y $2|z| \leq 1$ sí $|z| \leq \frac{1}{2}$ así $z \in C(0,1/2)$. Además veamos que este disco es transformado por Q_c en el disco C(c,1/4) (ver Figura 20).

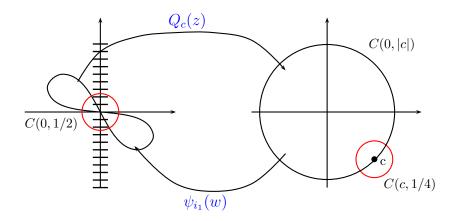


Figura 20

En efecto ya que si $z \in C(0, 1/2)$ entonces

$$|Q_c(z) - c| = |z^2| \le \frac{1}{4}.$$

Luego los puntos w que están en el disco centrado en c y radio 1/4 $(Q_c(C(0,1/2))=C(c,1/4))$ cumplen con $|\psi'_{i_1}(w)|\geq 1$. En efecto,

$$|\psi'_{i_1}(w)| = \frac{1}{|Q'_c(\psi_{i_1}(w))|} \ge 1$$
 para $w \in C(c, 1/4) \ (\psi_{i_1}(w) \in C(0, 1/2)).$

En consecuencia los puntos que están fuera del disco C(c, 1/4) su derivada es menor que uno.

Así por la proposición 2.3 sea el disco C(0,r) tal que $C(0,r) \supset \gamma$ y $C(0,r) \cap C(c,1/4) = \emptyset$ para valores de $|c| > \frac{5+\sqrt{24}}{4}$ entonces $\psi_0(C(0,r))$ y $\psi_1(C(0,r))$ están fuera del disco de centro 0 y radio $\frac{1}{2}$ de manera que podemos garantizar $n = \inf\{|z|, z \in D_0\}$ y $h = \inf\{|z|, z \in D_1\}$ son estrictamente mayores que $\frac{1}{2}$ para $|c| > \frac{5+\sqrt{24}}{4}$, por lo tanto $d > \frac{1}{2}$.

Capítulo 3

$\begin{array}{l} \text{Convergencia a 0 del} \\ \mathbf{diam}(D_{i_1,i_2,\dots,i_n}) \text{ cuando } n \to \infty \text{ para} \\ \text{valores de } |c| > 2 \end{array}$

Para demostrar que $diam(D_{i_1,i_2,...,i_n}) \to 0$ cuando $n \to \infty$ para |c| > 2 utilizaremos dos caminos, uno de estos caminos nos servirá solo para valores de $|c| > \frac{5 + \sqrt{24}}{4}$ y para el segundo camino introduciremos unas nuevas herramientas que nos ayudaran a demostrarlo para |c| > 2.

Sea C el disco de la proposición 2.2) y demostraremos:

Proposición 3.1 Sea $|c| > \frac{5 + \sqrt{24}}{4}$ entonces

- 1. $diam(D_{i_1,i_2,...,i_n}) \le \lambda^n diam(C)$ $0 < \lambda < 1$.
- 2. $diam(D_{i_1,i_2,...,i_n}) \to 0$ cuando $n \to \infty$.

Demostración:

 $\mathbf{1)} \mathbf{diam}(\mathbf{D_{i_1,i_2,\dots,i_n}}) \leq \lambda^{\mathbf{n}} \mathbf{diam}(\mathbf{C})$

Sea $x,y\in C$ y consideremos el segmento de recta que une x con y

$$p(t) = x(1-t) + yt \quad \text{donde} \quad 0 \le t \le 1.$$

Luego como ψ_{i_1} es una función continua entonces $\psi_{i_1}(p(t)) = \widehat{p_{i_1}}(t)$ es una curva dentro de D_{i_1} (ver Figura 21).

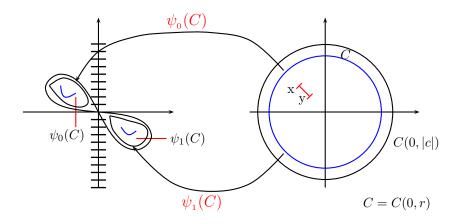


Figura 21

Así tenemos que

$$d(\psi_{i_1}(x), \psi_{i_1}(y)) \le l(\widehat{p_{i_1}}(t)).$$

Nota: La notación $l(\widehat{p_{i_1}}(t))$ es la longitud de la curva. Además tenemos

$$l(\widehat{p_{i_1}}(t)) = \int_0^1 |(\widehat{p_{i_1}}(t))'| dt \qquad (1) \quad \text{(esto es por definición de } l(\widehat{p_{i_1}}(t))),$$

 $|(\widehat{p_{i_1}}(t))'| = |\psi_{i_1}(p(t))'| = |\psi'_{i_1}(p(t))||p'(t)| \quad (2) \Big(\text{esto es por la } R \text{ cadena y propiedades de la norma} \Big)$

$$|\psi'_{i_1}(p(t))| = \frac{1}{|Q_c'(\psi_{i_1}(p(t)))|}$$
 (esto es debido a que ψ_{i_1} y Q_c
 $= \frac{1}{2|\psi_{i_1}(p(t))|}$ (3) son funciones inversas).

Por otra parte sea "d" tal que

 $d=minimo\{n,h\} \text{ donde } n=\inf\{|z|,z\in D_0\} \text{ y } h=\inf\{|z|,z\in D_1\}.$

Así $|z| \geq d \quad \forall z \in D_0 \quad (z \in D_1)$. Luego como $\psi_0(p(t)) \subset D_0$ y $\psi_1(p(t)) \subset D_1$ entonces $|\psi_0(p(t))| \geq d$ y $|\psi_1(p(t))| \geq d$, por tanto $|\psi_{i_1}(p(t))| \geq d$ y así obtenemos $\frac{1}{d} \geq \frac{1}{|\psi_{i_1}(p(t))|}$, continuando que

$$|\psi'_{i_1}(p(t))| = \frac{1}{2|\psi_{i_1}(p(t))|} \le \frac{1}{2d}$$
 (4).

Volviendo a (1) y en virtud (2), (3), (4) obtenemos que

$$d(\psi_{i_1}(x), \psi_{i_1}(y)) \leq \int_0^1 |(\widehat{p_{i_1}}(t))'| dt = \int_0^1 \left[\frac{1}{2|\psi_{i_1}(p(t))|} |p'(t)| \right] dt \leq \left(\int_0^1 |p'(t)| dt \right) \left(\frac{1}{2d} \right)$$

y teniendo $\int_0^1 |p'(t)| dt = d(x,y)$ (ya que es la longitud de una recta que une x con y) nos queda,

$$d(\psi_{i_1}(x), \psi_{i_1}(y)) \le \frac{1}{2d}d(x, y)$$
 (5)

donde $\psi_{i_1}(x), \psi_{i_1}(y) \in D_{i_1}$.

Aplicando supremo ambos lados de (5) y debido a sus propiedades tenemos que

$$\sup_{\psi_{i_1}(x),\psi_{i_1}(y)\in D_{i_1}} d(\psi_{i_1}(x),\psi_{i_1}(y)) \le \frac{1}{2d} \sup_{(x,y)\in C} d(x,y),$$

en consecuencia podemos afirmar

$$diam(D_{i_1}) \le \frac{1}{2d} diam(C),$$

luego por la Proposición 2.3 tenemos que $d > \frac{1}{2}$ así,

$$0<\frac{1}{2d}<1$$

y llamando(lambda) $\lambda = \frac{1}{2d} \quad$ se tiene

$$diam(D_{i_1}) \leq \lambda diam(C).$$

Por otra parte por (5) tenemos que

$$d(\psi_{i_1}(\psi_{i_2}(x)), \psi_{i_1}(\psi_{i_2}(y)) \le \lambda d(\psi_{i_1}(x), \psi_{i_1}(y)),$$

por tanto aplicando supremo obtenemos

$$\sup_{\psi_{i_1}(\psi_{i_2}(x)), \psi_{i_1}(\psi_{i_2}(y)) \in D_{i_0, i_1}} d(\psi_{i_1}(\psi_{i_2}(x)), \psi_{i_1}(\psi_{i_2}(y)) \leq \lambda \sup_{\psi_{i_1}(x), \psi_{i_1}(y) \in D_{i_1}} d(\psi_{i_1}(x), \psi_{i_1}(y))$$

así

$$diam(D_{i_1,i_2}) \leq \lambda \ diam(D_{i_1})$$

por ende tenemos

$$diam(D_{i_1,i_2}) \le \lambda^2 diam(C).$$

De manera análoga obtenemos que

$$diam(D_{i_1,i_2,i_3}) \le \lambda^3 diam(C)$$

y continuando este proceso por inducción llegamos a que

$$diam(D_{i_1,i_2,...,i_n}) \leq \lambda^n diam(C).$$

En efecto ya que en el paso n-1 tenemos que

$$diam(D_{i_1,i_2,\dots,i_{n-1}}) \le \lambda^{n-1} diam(C).$$

Luego resolviendo el mismo procedimiento que se realizo después de (5) se llega a

$$diam(D_{i_1,i_2,\dots,i_n}) \le \lambda diam(D_{i_1,i_2,\dots,i_{n-1}})$$

por tanto

$$diam(D_{i_1,i_2,...,i_n}) \le \lambda^n diam(C).$$

2) $diam(D_{i_1,i_2,\ldots,i_n}) \rightarrow 0$ cuando $n \rightarrow \infty$

Tomando límite cuando $n \to \infty$ en lo probado en 1) obtenemos que

$$0 \le \lim_{n \to \infty} diam(D_{i_1, i_2, \dots, i_n}) \le \left(\lim_{n \to \infty} \lambda^n\right) \operatorname{diam}(C). \tag{1}$$

Pero el lím $\lambda^n=0$ cuando $0<\lambda<1,$ por tanto aplicando el Teorema del Emparedado en (1) nos queda que

$$\lim_{n \to \infty} diam(D_{i_1, i_2, \dots, i_n}) = 0,$$

para
$$|c| > \frac{5 + \sqrt{24}}{4}$$
.

Para continuar con el segundo camino daremos unas nuevas definiciones.

Observación: Se define una bola de centro 0 y radio r como el conjunto $E = \{z : |z| < r\}$, que denotaremos B(0, r).

Comencemos recordemos que en la geometría diferencial podemos definir una nueva norma de un vector así:

Definición 3.1 Sea B=B(0,1), entonces se define la función de Poincare $\rho: B \to B \ como \ \rho(z) = \frac{1}{1-|z|^2}.$

Definición 3.2 Sea B = B(0,1) y $z \in B$, se define la longitud de un vector $E \in C$ saliendo de z como

$$||E||_{\rho,z} = \rho(z)|E|_e$$
 (donde $|E|_e$ denota la longitud euclidiana).

Así obtenemos una nueva medida de longitud de una curva.

Definición 3.3 *Sea* B = B(0,1). *Si*

$$\tau:[a,b]\longrightarrow B$$

es una curva continuamente diferenciable entonces se define la longitud con la función ρ como

$$l_{\rho}(\tau) = \int_{a}^{b} \|\tau'(t)\|_{\rho,\tau(t)} dt$$

donde

$$\|\tau'(t)\|_{\rho,\tau(t)} = \rho(\tau(t))|\tau'(t)|.$$

Definición 3.4 Sea B = B(0,1), se define el conjunto $C_B(P,Q)$ como la colección de curvas continuamente diferenciables

$$\tau: [0,1] \longrightarrow B \quad tal \ que \quad \tau(0) = P \quad \ y \quad \ \tau(1) = Q.$$

Ahora se definirá la distancia de Poincare .

Definición 3.5 Sea B = B(0,1) y sean $P, Q \in B$, se define la distancia de Poincare de P a Q como

$$d_{\rho}(P,Q) = \inf\{l_{\rho}(\tau) : \tau \in C_B(P,Q)\}.$$

Definición 3.6 Sea B = B(0,1) y sea $f : B \longrightarrow B$ una función continuamente diferenciable, se define el "pullback" con ρ bajo f como

$$f^{\star}\rho(z) = \rho(f(z)) \left| \frac{\partial f}{\partial z} \right|.$$

También asumiremos algunas proposiciones que no serán demostradas.

Proposición 3.2 Si $f: B(0,1) \longrightarrow B(0,1)$ es analítica , $f(z_1) = w_1$ y $f(z_2) = w_2$ entonces

$$\left| \frac{w_1 - w_2}{1 - w_1 \overline{w_2}} \right| \le \left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right|$$

y

$$|f'(z_1)| \le \frac{1 - |w_1|^2}{1 - |z_1|^2}.$$

Demostración: Ver Página 16 de Steven. G Krantz, Complex Analysis the Geometic Viewpoin.

Proposición 3.3 La topología inducida en B(0,1) por la métrica de Poincare es la misma que la métrica euclidiana.

Demostración: Ver Página 54 de Steven.G Krantz, Complex Analysis the Geometic Viewpoin.

Proposición 3.4 El disco unitario con la métrica de Poincare es un espacio métrico completo.

Demostración: Ver Página 55 de Steven.G Krantz, Complex Analysis the Geometic Viewpoin.

Se demostrara ahora el clásico lema de Schwarz.

Teorema 3.1 Sea B = B(0,1) y $F : B \longrightarrow B$ una función analítica entonces F disminuye la distancia de Poincare bajo la función ρ . Esto es para cualquier $z \in B$

$$|F^{\star}(\rho(z))| \le |\rho(z)|.$$

 $Y \ además \ si \ \tau : [0,1] \longrightarrow B(0,1) \ es \ una \ curva \ continuamente \ diferenciable \ entonces$

$$l_{\rho}(F_o\tau(t)) \leq l_{\rho}(\tau(t)).$$

Y si P y Q son elementos de B entonces

$$d_{\rho}(F(P), F(Q)) \leq d_{\rho}(P, Q)$$
.

Demostración: Sabemos que

$$F^{\star}(\rho(z)) = |F'(z)|\rho(F(z)) = |F'(z)| \frac{1}{1 - |F(z)|^2}.$$

Por la Proposición 3.2 haciendo w=F(z) obtenemos,

$$|F'(z)| \le \frac{1 - |w|^2}{1 - |z|^2}$$

pero esto es

$$|F'(z)| \frac{1}{1 - |F(z)|^2} \le \frac{1}{1 - |z|^2} = \rho(z),$$

así

$$F^*\rho(z) \le \rho(z)$$
 (1).

Por otra parte si $\tau:[0,1]\longrightarrow B$ es curva continuamente diferenciable entonces por (1)

$$\rho(F(\tau(t)))|(F'(\tau(t)))| \le \rho(\tau(t))$$

luego multiplicando ambos miembros por $|\tau'(t)|$ nos queda

$$\rho(F_{\circ}\tau(t))|F'(\tau(t))||\tau'(t)| \le \rho(\tau(t))|\tau'(t)|,$$

y esto significa

$$\|(F_{\circ}\tau(t))'\|_{(\rho,F_{\circ}\tau(t))} \le \|\tau'(t)\|_{\rho,\tau(t)}$$
 (definición).

Integrando ambos miembros de la ecuación anterior se obtiene

$$\int_{0}^{1} \|(F_{\circ}\tau(t))'\|_{(\rho,F_{\circ}\tau(t))}dt \le \int_{0}^{1} \|\tau'(t)\|_{\rho,\tau(t)}dt$$

por tanto

$$l_{\rho}((F_{\circ}\tau(t))) \le l_{\rho}(\tau(t))$$
 (2).

Por otro lado sea $P, Q \in B$ y $\tau : [0, 1] \longrightarrow B$ una curva continuamente diferenciable que une P con Q, entonces la curva $F(\tau(t))$ es continuamente diferenciable y cumple con $F(\tau(0)) = F(P)$ y $F(\tau(1)) = F(Q)$ por tanto es una curva que une F(P) con F(Q) y por (2) obtenemos,

$$l_{\rho}((F_{\circ}\tau(t))) \leq l_{\rho}(\tau(t))$$

y aplicando ínfimos ambos miembros

$$\inf(l_{\rho}((F_{\circ}\tau(t)))) \leq \inf(l_{\rho}(\tau(t))),$$

pero esto significa por definición que

$$d_{\rho}(F(P), F(Q)) \le d_{\rho}(P, Q) \qquad (d_{\rho}(P, Q) = \inf \{ L_{\rho}(\tau) : \tau \in C_B(P, Q) \}).$$

Teorema 3.2 Sea B = B(0,1) y $F : B \longrightarrow B$ una función analítica en su dominio además asumamos que la imagen $M = \{F(z) : z \in B\}$ de F es un compacto en B entonces F es una contracción con la métrica de Poincare .

Demostración: Por hipótesis existe un $\varepsilon > 0$ tal que si $m \in M$ y $|z| \ge 1$ entonces $|m - z| > 2\varepsilon$ (ver Figura 22).

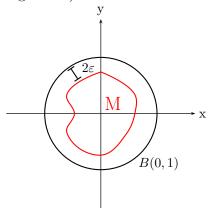


Figura 22

Fijemos $z_0 \in B(0,1)$ y definamos

$$g(z) = F(z) + \varepsilon (F(z) - F(z_0)).$$

Como g es la composición de funciones analíticas entonces es analítica, además g manda B(0,1) dentro B(0,1) para ello veamos

$$|g(z)| = |F(z) - \varepsilon(F(z) - F(z_0))| \le |F(z)| + \varepsilon|F(z) - F(z_0)|$$
 (designaldad triangular)
 $< 1 - 2\varepsilon + 2\varepsilon = 1$

por tanto |g(z)| < 1. Por otra lado $g'(z) = F'(z) + \varepsilon F'(z)$, así

$$g'(z_0) = (1 + \varepsilon)F'(z_0).$$

Luego como g es una función analítica entonces por el Teorema 3.5 tenemos que

$$|g^{\star}\rho(z_0)| \leq |\rho(z_0)|$$

esto significa que

$$|g^*\rho(z_0)| = |(1+\varepsilon)F'(z_0)\rho(g(z_0))| = (1+\varepsilon)|F'(z_0)|\rho(F(z_0))$$

= $(1+\varepsilon)|F^*\rho(z_0)| \le |\rho(z_0)|,$

y como z_0 es cualquiera de B entonces

$$(1+\varepsilon)|F^*\rho(z)| \le |\rho(z)|. \quad (1)$$

Por otra parte si $\tau:[0,1]\longrightarrow B(0,1)$ es curva continuamente diferenciable entonces por (1) tenemos que

$$(1+\varepsilon)\rho(F(\tau(t)))|F'(z)| \le |\rho(\tau(t))|$$

así multiplicando por $|\tau'(t)|$,

$$(1+\varepsilon)\rho(F(\tau(t)))|F'(z)||\tau'(t)| \leq |\rho(\tau(t))|||\tau'(t)|.$$

Pero la ecuación anterior significa

$$(1+\varepsilon)||F \circ \tau(t)||_{\rho,F \circ \tau(t)} \le ||\tau(t)||_{\rho,\tau(t)},$$

e integrando ambos miembros nos queda

$$l_{\rho}(F_{\circ}\tau) \leq (1+\varepsilon)^{-1}l_{\rho}(\tau(t))$$
 (por definition) (2).

Por otro lado sea una curva $\sigma : [0,1] \longrightarrow B(0,1)$ continuamente diferenciable tal que $\sigma(0) = P$ y $\sigma(1) = Q$, luego la curva $F(\sigma(t))$ es continuamente diferenciable y además cumple $F(\sigma(0)) = F(P)$ y $F(\sigma(1)) = F(Q)$ y aplicando (2)

$$l_{\rho}(F_{\circ}\sigma(t)) \leq (1+\varepsilon)^{-1}l_{\rho}(\sigma(t)),$$

luego aplicando ínfimo ambos lados

$$d_{\rho}(F(P), F(Q)) \leq \left(\frac{1}{1+\varepsilon}\right) d_{\rho}(P, Q)$$
 (por definition).

Así denotando $M = \frac{1}{1+\varepsilon}$ entonces

$$d_{\rho}(F(P), F(Q)) \le M d_{\rho}(P, Q)$$
 donde $0 < M < 1$,

por tanto F es una contracción con la métrica ρ .

Ahora trabajaremos con funciones analíticas definidas en la bola B(0,r). Para ello daremos unas nuevas definiciones que nos ayudaran a utilizar las proposiciones demostradas, en las que trabajamos con la distancia de Poincare para funciones definidas en B(0,1).

Definamos $h: B(0,1) \longrightarrow B(0,r)$ como

h(z) = rz, (notemos que h es una función biyectiva).

Así $h^{-1}: B(0,r) \longrightarrow B(0,1)$

 $h^{-1}(z) = \frac{z}{r}$ $(h, h^{-1} \text{ son funciones analíticas }).$

Ahora sea $x, y \in B(0, r)$ definimos

 $d'(x,y) = d_{\rho}(\frac{x}{r}, \frac{y}{r})$ (donde d_{ρ} denota la distancia de Poincare en la B(0,1)) observamos que d' es una métrica en el B(0,r) y es llamada la métrica inducida por h^{-1} .

Teorema 3.3 Sea $F: B(0,r) \longrightarrow B(0,r)$ una función analítica y asumamos que $M = \{F(z) : z \in B(0,r)\}$ es un compacto contenido en B(0,r) entonces F es una contracción con la métrica inducida d'.

Demostración: Definamos $G: B(0,1) \longrightarrow B(0,1)$ como $G(\bar{x}) = h^{-1} {}_{\circ}F_{\circ}h(\bar{x})$ donde $\bar{x} \in B(0,1)$.

Veamos en la Figura 23 que G esta bien definida.

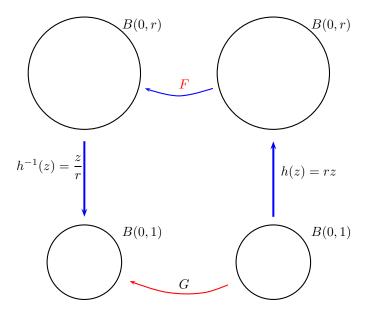


Figura 23

Por otra parte como la función G es composición de funciones analíticas entonces es analítica, así por el Teorema 3.2 tenemos que G es una contracción con la distancia de Poincare esto significa

$$d_{\rho}(G(\overline{x}), G(\overline{y})) \le \lambda d_{\rho}(\overline{x}, \overline{y})$$
 para $0 < \lambda < 1$,

luego

$$d_{\rho}(G(\overline{x}), G(\overline{y})) = d_{\rho}(h^{-1} {}_{\circ}F_{\circ}h(\overline{x}), h^{-1} {}_{\circ}F_{\circ}h(\overline{y})),$$

pero $h(\overline{x})$ y $h(\overline{y})$ están en B(0,r) así $h(\overline{x})=x$ y $h(\overline{y})=y$ donde $x,y\in B(0,r)$. Siguiendo que

$$d_{\rho}(h^{-1}(F(x)), h^{-1}(F(y))) = d_{\rho}\left(\frac{F(x)}{r}, \frac{F(y)}{r}\right) = d'(F(x), F(y))$$

y por otro lado se tiene $d_{\rho}(\overline{x}, \overline{y}) = d_{\rho}(h^{-1}(x), h^{-1}(y)) = d'(x, y)$ por tanto tenemos que

$$d'(F(x), F(y)) \le \lambda d'(x, y)$$
 para $x, y \in B(0, r)$ y $0 < \lambda < 1$.

Así la función F es una contracción con d'.

 \mathbb{H}

Ahora sea el disco C(0,r) de la proposición 2.2 y consideremos B(0,r') donde r'>0 y r< r'<|c| (lo cual es posible ya que C(0,r) es un conjunto compacto contenido en el interior del disco C(0,|c|)) entonces probaremos:

Corolario 3.1 Sea B = B(0, r') y $G : B \to B$ una función analítica en su dominio entonces la función G es una contracción con la métrica inducida d'.

Demostración: Aplicando el teorema 3.3 G es una contracción con d'.

Observación: Denotaremos el diámetro con la métrica d' como $diam|_{ind}$ y con la métrica euclidiana como $diam|_e$.

Proposición 3.5 Sea |c| > 2 entonces

- 1. $\lim_{n \to \infty} diam|_{ind}(D_{i_1, i_2, \dots, i_n}) = 0$
- 2. $\lim_{n \to \infty} diam|_e(D_{i_1, i_2, \dots, i_n}) = 0.$

Demostración:

 $1) \lim_{n \to \infty} diam|_{ind}(D_{i_1,i_2,\dots,i_n}) = 0$

Sea B = B(0, r') y definamos $\psi_{i_1} : B \to B$, así por el corolario 3.1 ψ_{i_1} es una contracción con la métrica inducida d' ya que la función ψ_{i_1} es analítica en B y como el disco C de la proposición 2.2 esta en el interior de B entonces ψ_{i_1} es una contracción en el disco C con la métrica inducida d' así

$$d'(\psi_{i_1}(x), \psi_{i_1}(y)) \le \lambda d'(x, y) \quad x, y \in C$$
 (1).

Aplicando nuevamente (1) con la función ψ_{i_1} para $\psi_{i_2}(x), \psi_{i_2}(y) \in C$ obtenemos

$$d'(\psi_{i_1} \circ \psi_{i_2}(x), \psi_{i_1} \circ \psi_{i_2}(y)) \le \lambda d'(\psi_{i_2}(x), \psi_{i_2}(y)) \le \lambda^2 d'(x, y)$$

y en el paso n por inducción llegamos a

$$d'(\psi_{i_1} \circ \dots \circ \psi_{i_n}(x), \psi_{i_1} \circ \dots \circ \psi_{i_n}(y)) \le \lambda^n d'(x, y) \quad \text{donde} \quad 0 < \lambda < 1.$$

En efecto ya que en el paso n-1 tenemos

$$d'(\psi_{i_1} \circ \ldots \circ \psi_{i_n}(x), \psi_{i_1} \circ \ldots \circ \psi_{i_n}(y)) \leq \lambda d'(\psi_{i_1} \circ \ldots \circ \psi_{i_{n-1}}(x), \psi_{i_1} \circ \ldots \circ \psi_{i_{n-1}}(y))$$

y además

$$d'(\psi_{i_1} \circ \dots \circ \psi_{i_{n-1}}(x), \psi_{i_1} \circ \dots \circ \psi_{i_{n-1}}(y)) \le \lambda^{n-1} d'(x, y)$$

así

$$d'(\psi_{i_1} \circ \dots \circ \psi_{i_n}(x), \psi_{i_1} \circ \dots \circ \psi_{i_n}(y)) \leq \lambda^n d'(x, y)$$
 donde $0 < \lambda < 1$,

por tanto es cierto para el paso n. Luego aplicando supremos ambos miembros a la ecuación anterior

$$\sup d'(\psi_{i_1} \circ \dots \circ \psi_{i_n}(x), \psi_{i_1} \circ \dots \circ \psi_{i_n}(y)) \le \lambda^n \sup d'(x, y)$$

pero esto significa

$$diam|_{ind}(D_{i_1,i_2,...,i_n}) \leq \lambda^n diam|_{ind}(C),$$

tomando límite a ambos miembros de la ecuación anterior se llega

$$0 \le \lim_{n \to \infty} \operatorname{diam}|_{ind}(D_{i_1, i_2, \dots, i_n}) \le \lim_{n \to \infty} \lambda^n \operatorname{diam}|_{ind}(C).$$

Luego como $\lim_{n\to\infty}\lambda^n=0$ cuando $0<\lambda<1$ y por el teorema del emparedado obtenemos

$$\lim_{n \to \infty} \operatorname{diam}|_{ind}(D_{i_1, i_2, \dots, i_n}) = 0.$$

2)
$$\lim_{n\to\infty} \mathbf{d}iam|_e(D_{i_1,i_2,...,i_n})=0$$

Tenemos que d' y la métrica euclidiana son equivalentes en cualquier compacto contenido en C, en particular en el conjunto compacto $D_0 \cup D_1$ así existe M > 0 y K > 0 tal que

$$Md_{\inf}(\psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(x), \psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(y)) \leq d_{e}(\psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(x), \psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(y))$$

$$\leq Kd_{\inf}(\psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(x), \psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(y)),$$

$$\inf_{\inf}(\psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(x), \psi_{i_{1}} \circ \dots \circ \psi_{i_{n}}(y)),$$

luego aplicando supremo obtenemos

$$Mdiam\Big|_{ind}(D_{i_1,i_2,\dots,i_n}) \le diam\Big|_{e}(D_{i_1,i_2,\dots,i_n}) \le Kdiam\Big|_{ind}(D_{i_1,i_2,\dots,i_n})$$

y tomando límite a la ecuación anterior se tiene

$$M \lim_{n \to \infty} diam \Big|_{\text{ind}} (D_{i_1, i_2, \dots, i_n}) \le \lim_{n \to \infty} diam \Big|_{e} (D_{i_1, i_2, \dots, i_n}) \le K \lim_{n \to \infty} diam \Big|_{\text{ind}} (D_{i_1, i_2, \dots, i_n}),$$

continuando que por lo demostrado en (1) y por teorema del emparedado obtenemos

$$\lim_{n \to \infty} diam|_{\mathbf{e}}(D_{i_1, i_2, \dots, i_n}) = 0 \qquad \text{para} \qquad |c| > 2.$$

Capítulo 4

Teorema Principal

Antes de demostrar el teorema principal enunciaremos el siguiente teorema:

Teorema 4.1 (Intersección de Cantor) Sea $\{f_i\}$, $i \in N$ una sucesión de subconjuntos cerrados, no vacíos y acotados de R^n que cumplen

$$f_1 \supseteq f_2 \supseteq \dots \supseteq f_n \supseteq \dots$$

entonces existe un punto que pertenece a todos los conjuntos $\{f_i : i \in N\}$.

Demostración: Su demostración es bastante conocida en los libros de análisis matemático.

Consideremos el conjunto \bigwedge_c definido en el capitulo 1 y demostremos:

Teorema Principal Sea $c \in \mathcal{C}$ con |c| > 2 entonces el conjunto \bigwedge_c es un conjunto de Cantor.

Demostración:

 \bigwedge_{c} es un conjunto cerrado.

Sabemos por la proposición 2.2 que $\bigwedge_c = \bigcap_{n=1}^{\infty} Q^{-n}(C)$.

Así cuando n = 1 obtenemos que $Q_c^{-1}(C)$ esta formado por la unión de dos discos, que son preimágenes de un disco C que es un conjunto cerrado en el plano,

luego como ψ_0 y ψ_1 son funciones continuas entonces las preimágenes $\psi_0(C)$ y $\psi_1(C)$ son conjuntos cerrados, por tanto $Q_c^{-1}(C)$ es la unión de 2 conjuntos cerrados que es cerrado (ya que la unión finita de cerrados es cerrado).

Cuando n=2, tenemos que $Q_c^{-2}(C)$ es la unión por 2^2 discos (que son cerrados), así $Q_c^{-2}(C)$ es un conjunto cerrado.

De manera análoga, continuando este proceso inductivamente llegamos a que $Q_c^{-n}(C)$ es la unión de 2^n discos, de manera que $Q_c^{-n}(C)$ es un conjunto cerrado. En efecto ya que $Q_c^{-n+1}(C)$ esta formado por 2^{n-1} discos que son conjuntos cerrados y cada uno de ellos me genera dos discos cerrados por medio de las funciones continuas ψ_0 y ψ_1 , por tanto $Q_c^{-n}(C)$ estará formado por la unión $22^{n-1}=2^n$ discos cerrados que es cerrado.

Luego como la intersección infinita de cerrados es cerrado entonces

$$\bigwedge_{c} = \bigcap_{n=1}^{\infty} Q_{c}^{-n}(C)$$

es un conjunto cerrado.

$\bigwedge_{\mathbf{c}}$ es un conjunto totalmente disconexo

Tomemos $p \in \bigwedge_c = \bigcap_{n=1}^{\infty} Q_c^{-n}(D)$, sea $\varepsilon > 0$ y consideremos la $B(p, \varepsilon)$. Supongamos por reducción al absurdo que

$$B(p,\varepsilon) \subset \bigwedge_{c} = \bigcap_{m=1}^{\infty} Q_{c}^{-n}(C)$$

entonces $B(p,\varepsilon) \subset \bigcap_{n=1}^{\infty} Q_c^{-n}(C)$ de manera que,

$$0 < diam(B(p, \varepsilon)) \le diam(D_{i_1, \dots, i_n})$$

(donde cada D_{i_1,\dots,i_n} es un disco de $Q_c^{-n}(C)$) así obtenemos que

$$0 < 2\epsilon \leq diam(D_{i_1,\dots,i_n}).$$

Luego aplicando en la ecuación anterior límite cuando $n \to \infty$ nos queda que

$$0 \le 2\epsilon \le \lim_{n \to \infty} diam(D_{i_1,\dots,i_n}),$$

pero en virtud de la Proposición 3.5 tenemos que $\lim_{n\to\infty} diam(D_{i_1,\dots,i_n}) = 0$ para valores de |c| > 2 con lo que nos quedaría que $2\varepsilon = 0$, pero esto es absurdo ya que $\varepsilon > 0$.

Por tanto $B(p,\varepsilon)$ tiene puntos que no están en \bigwedge_c .

En consecuencia \bigwedge_c no contiene bolas así \bigwedge_c es un conjunto totalmente disconexo.

\bigwedge_{c} es un conjunto perfecto

Sea $p \in \bigwedge_c$, $\varepsilon > 0$ y consideremos $B(p,\varepsilon)$ luego como $\dim_{\mathbb{R}}(D_{i_1,\dots,i_n}) \longrightarrow 0$ cuando $n \longrightarrow \infty$ entonces podemos encontrar un n tal que $Q_c^{-n}(D)$ contiene un disco tal que $D_{i_1,\dots,i_{n_k}} \subset B(p,\varepsilon)$ y $D_{i_1,\dots,i_{n_k}}$ contiene a p (también tiene puntos distintos de p).

Luego en la iteración -n-1, el disco $D_{i_1,...,i_{n_k}}$ contiene 2 discos que vienen de ψ_0 (o de ψ_1) y están dentro de $B(p,\varepsilon)$, uno de estos discos contiene a p y el otro no.

Como en el disco que no contiene a p se va a generar una intersección anidada de discos entonces por el teorema de intersección de Cantor existe p_k perteneciente a dicha intersección anidadas de discos, que se genera de un disco de cada n por tanto,

$$p_k \in \bigwedge_c = \bigcap_{n=1}^{\infty} Q_c^{-n}(C)$$

así \bigwedge_c es un conjunto perfecto.

Bibliografía

- [1] DEVANEY, ROBERT L. An introduction to Chaotic Dynamical Systems. Second edition. Addison Wesley Publishing Company, Inc, 1989.
- [2] CHURCHILL, RUEL V.; BROWN, JAMES. Variable compleja y aplicaciones. Quinta edicion, Mc Graw Hill, 1992
- [3] MARSDEN, JERROLD E.; HOFFMAN, MICHAEL J. Analisis básico de variable compleja. Editorial Trillas. Primera edición. 1996.
- [4] KRANTZ, STEVEN G. Complex Analysis: The Geometric Viewpoint. The Matematical Association of America, 1990