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Universidad Nacional Experimental del Táchira, Táchira, Venezuela.
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RESUMEN

Hemos llevado a cabo simulaciones del tipo Autómata Celular para un modelo de
un polielectrolito en dilución infinita, para reproducir de manera cualitativa sus
propiedades conformacionales. Nuestros resultados predicen las llamadas estructuras
de collar de perlas, las cuales se comparan bien con simulaciones de Dinámica Molec-
ular más elaboradas y costosas.

ABSTRACT

We carried out a Cellular Automata simulation of a model polyelectrolyte solution at
infinite dilution, in order to reproduce qualitatively its conformational properties. Our
results predict the so called pearl necklace structures, which compare favorably with
the more elaborated and costly Molecular Dynamics simulations.

PACS numbers:

I. INTRODUCTION

Polyelectrolyte (PE) solutions are systems widely
studied since they show properties that are of funda-
mental interest for applications in health science, food
industry, water treatment, surface coatings, oil industry,
among other fields. In fact, one of the problems found in
genetic engineering in the appearance of conformational
changes of the ADN molecule, which is a charged
polyelectrolyte.[3].

Here we study an infinite dilution polyelectrolyte
solution, so that, the interaction among polyelectrolyte
macromolecules are negligible. We model the poly-
electrolyte as having dissociable functional groups that
give rise to charged sites and counter-ions in aqueous
solution. The long range interactions arising from these
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multiple charges are responsible for their macroscopic
complex properties, which can not be explained by
regular polymer theories. The spatial structures of these
materials in solution have been studied extensively,
particularly with a scaling theory[1, 2] that are not
appropriate for highly charged PE. The first simulations
carried out for a single chain predicted the formation
of groups of monomers, as the fraction of charged
monomers increased. Such structures are known as
pearl necklaces. The size of such pearls and the distance
between then is determined by the balance between the
electrostatic repulsion and steric effects.

These pearl necklace structures have also been found
in Molecular Dynamics (MD) simulations[4–10]. In this
paper we are interested in the application of the much
simpler Cellular Automata simulation to characterize the
main features of a polyelectrolyte that could be respon-
sible for such conformations. The complete simulation of
this complex system requires the description of a model
in terms of potential or forces. In the MD simulations
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of Limbach and Holm [4], the monomers are connected
along the chain by the finite extendible nonlinear elastic
(FENE) bond represented by the potential energy.

UE(r) = −1
2
KER2

0 ln
(

1− r2

R2
0

)
(1)

where r is the distance between two bonded monomers,
KE , is the elastic bond constant, σ is the monomer diam-
eter, kB is Boltzmann’s constant, T is the absolute tem-
perature and the parameter R0 represents the maximum
extension of the bond between two neighbor monomers.
Two charged sites i and j, with charges eqi and eqj , a dis-
tance rij apart, interact with the electrostatic Coulomb
potential

UC(rij) = kBT
λBqiqj

rij
. (2)

This potential is weighed by the Bjerrum length λB =
e2/[4πεoεskBT ], where εs and εo are the solvent permi-
tivity and the vacuum permitivity respectively, e is the
electric charge unit. The parameter λB is a measure of
the strength of the electrostatic force as compared to the
kinetic energy. The length ratio σ/λB is a measure of
the reduced temperature T/[e2/(4πεoεskBσ)].

The short range and van der Waals interaction between
any two particles or monomers is represented in the MD
simulation by a typical truncated Lennard-Jones poten-
tial

ULJ(rij) =
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−
(
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]

+ εcut rij < Rc,

0 rij > Rc

(3)
where ε is the potential energy well depth and εcut is the
cut off energy. This potential prevents the superposition
of the bonding monomers. Counter-ions interact via a
purely repulsive LJ interaction with Rc = 21/6σ.

II. CELLULAR AUTOMATA MODEL

Even though in the Cellular Automata simulation we
do not use any form of potential energies or forces in
an explicit manner, the rules for the movement of the
different particles must be inspired on a model defined
in terms of such potentials. We therefore establish
our rules based on the essence of the previous three
potentials.

A. Polyelectrolyte Chain Construction Rules

The polymer is constructed by placing the monomers
in a three dimensional cubic network of side L and
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FIG. 1: Celular Automata Model. The dark bonded circles
represent the charged monomers, the gray circles are the neu-
tral monomers and the open circles are the counter-ions. The
shaded area corresponds to the range volume λB = 3σ

volume L3. Each cell then has 26 neighbors and rep-
resents a monomer with a monovalent charge +1, −1,
or, for a neutral monomer, 0, as depicted in Fig.(1) in
two dimensions. Out of a total of N monomers in the
chain, it is assumed that a given fraction f is charged.
The polymer is then constructed by randomly binding
consecutive sites in the network. Each monomer could
be charged or uncharged, with a distribution chosen
randomly. A key step on the construction of the polyion
is the spatial location of the dissociated counter-ions.
We place the counter-ions also randomly in free cells
in the volume around the charged monomer within a
distance λB , that is, in a volume (2λB)3 centered on
the charged site. The use of the Bjerrum parameter,
which is related to the quality of the solvent, ensures
the conservation of the total electroneutrality but gives
a spatial distribution of counter-ions around the charged
sites.

So, each monomer i of the system is represented in
a Nx4 matrix where each element M(mx,my,mz, qi)
indicates the ith polymer with charge qi, that could be
−1, +1 or 0, at the positions x, y, z given by the cell label
[mx,my,mz]. The counter-ions with opposite charge are
represented by a similar fNx4 matrix MC .

For simplicity we chose monomers with dissociable
groups that give a site with a positive charge. We then
set the following displacement rules for the different
particles:

B. Displacement Rules

Neutral Monomer Particle

1. Locate the unoccupied nearest neighbor sites. The
new position where a move could be acceptable
are those where it does not superimposed with any
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FIG. 2: Final polyelectrolyte configuration for different charge
fractions f : A) 0.1 B) 0.3 C) 0.5 D) 0.7. The pearl necklace
conformations appear as the charge fraction increases.

other particle in the system and where no bond is
broken.

2. Count the amount of monomer particles around
the current position and around every unoccupied
neighbor, within a cube of volume (2L)3 centered
on it.

3. Move the test neutral monomer to the position that
has the higher amount of monomers around it, in-
cluding the current one if it were the case.

Positively Charged Monomer Particle

1. As before, locate the unoccupied acceptable nearest
neighbor sites.

2. Count the amount of charge around the current
position and around every unoccupied neighbor,
within a cube of volume (2λB)3 centered on it.

3. Move the test positive charged monomer to the po-
sition that has the lowest positive charge around it,
including the current one if it were the case.

Negatively charged counter-ion

1. Move randomly to an unoccupied site within a cube
of volume (2λB)3 centered on the accepted new po-
sition of the corresponding positive monomer in the
polymeric chain.

III. RESULTS AND DISCUSSION

We denote the position of monomer i with ri and the
distance between two particles i and j with rij. The
center of mass for the chain is then Rs = 1

N

∑N
i=1 ri.

and the center of mass coordinates are xi = ri − Rs.

A parameter that is useful in the study of the spatial
conformations of a polymer is the radius of gyration RG,
defined as

R2
g =

1
N

N∑

i=1

x2
i (4)

According with our construction and movement rules,
we can vary the length of the chain L, or the number
of monomers N , satisfying L = Nσ and the number
of charged monomers, Nc = fN . We also take as an
independent variable the parameter λB , which deter-
mines the number of cells, of size σ, where the range of
the electrostatic attraction between a charged monomer
and contra-ion extends. The charge distribution of the
sequence of charged and uncharged monomers is de-
termined randomly depending on the initial random seed.

In Fig.(2) we show some of the equilibrium confor-
mations obtained for a polyelectrolyte with N = 100
monomers, with λB = 3σ, for several charge fractions.
The line represents the polyelectrolyte, the filled black
bonded circles represent the charged monomers. The
counter-ions in solution are represented by open non-
bonded circles. For clarity, the neutral monomers are
not shown. For a low charge fraction of f = 0.1, the
polyion presents an elongated string appearance. As
the charge fraction is increased the polyion contracts
and some groups of monomers tend to form clusters, so
that, already for f = 0.5, it shows the locally collapsed
structures known as pearl necklace. These results
are very similar to those obtained by the Molecular
Dynamics simulations of Limbach and Holm [2, 4]

It is important to notice that for a given total charge,
determined by the fraction f , different distributions of
the charged monomers give different conformations. To
study this behavior, we have carried out simulations
with several initial seeds for N = 100 monomers, with
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FIG. 3: Evolution of the Radius of Gyration Rg as a function
of time steps t, for N = 100, λB/σ = 3 and f = 0.5. Each
curve corresponds to different random charged sites distribu-
tions, obtained with different seeds.
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FIG. 4: Equilibrium Polyelectrolyte structures in the plateau
Rg region for the charge of distributions of Fig.(3). A) seed1,
B) seed2, C) seed3 and D) seed4.
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FIG. 5: Histograms for Rg for N = 150, f = 0.5 and two
values of λB/σ, A) 3 and B)9

a fixed fraction f = 0.5 and a range parameter of
λB/σ = 3. In Fig.(3), we show the temporal evolution of
the radius of gyration Rg. In all cases the conformations
change from the initial given Rg value to a plateau
value that correspond to the equilibrium structures.
Fig.(3) clearly show that the plateau Rg values, and
thence, the final conformations depend on the charge
distribution. In Fig.(4) we show snapshots of final
structures corresponding with the different seeds of
Fig.(3).

As we can see from Fig.(4), the formation of the pearl
necklace structures is independent of the charge sites dis-
tribution, for a given f and λB . These clusters seem to
be stabilized by the counter-ions as a consequence of the
electroneutrality condition that we force to be satisfied.
This is so because in our model the degree of freedom of
the mobile counter-ions is much higher that that of the
monomers tied to the chain. The strong repulsions that
originate by the formation of clusters of neutral and posi-
tively charged monomers is compensated by the counter-
ion cloud that forms around it.
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FIG. 6: Polyelectrolyte conformations for several values of
the reduced Bjerrum parameter λB/σ A) 3,B) 6,C) 9 and D)
12. Here f = 0.9 and N = 100 and we used the same initial
charge distributions

In order to study the reproducibility of the configura-
tions found, we carried out a large number of simulation
runs, for fixed values of N = 150, f = 0.5, λB/σ = 3
and 9 and for the same initial charge distribution. In
Fig.(5) we show the histograms for the frequency with
which a given value of Rg appears. We can see that the
distribution of the Rg is very closely a gaussian with a
reasonably low dispersion of less than a 10% about the
mean value.

In Fig.(5B) we can see that similar distribution is
obtained when the range parameter λB/σ increases to a
value of 9. We have further tested the effect of the pa-
rameter λB by generating structures for different values
of it. In Fig.(6) we show some equilibrium conformations
for λB/σ equal to A) 3,B) 6,C) 9 and D) 12. Here we
use a large charge fraction f = 0.5 and N = 100 and we
used the same initial charge distributions in all cases.
As we can observe as Bjerrum length increases the final
polyelectrolyte structures become more compact. The
number or pearls or conglomerates is higher for the
lower values of λB , a result similar to that obtained by
MD simulations of Limbach y Holm [4]-[10]

IV. CONCLUSIONS

With the simple technique described here, we were able
to reproduce the complex structure of model polyelec-
trolytes that fare very well with those predicted by the
more sophisticated Molecular Dynamic and Monte Carlo
simulations[2, 4]. We even predict situations with single
conglomerates and with pearl necklace type conglomer-
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ates. We thus show the potentiality of the Celular Au-
tomata in the simulation of the trends in the formation
of the various types of spatial conformations of polyelec-
trolytes. We remark on the importance of the charge
distribution once the fractional charge is fixed.
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