NH
5
%

ELSEVIER

14 August 1994

Physics Letters A 204 (1995) 128-132

PHYSICSLETTERS A

Collective behavior of coupled chaotic maps
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Abstract

The collective behavior of a coupled map lattice having unbounded chaotic local dynamics is investigated through the
properties of its mean field. The presence of unstable periodic orbits in the local maps determines the emergence of
nontrivial collective behavior. Windows of collective period-two states are found in parameter space.
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Coupled map lattices (CMLs) have provided fruit-
ful models for the study of many spatiotemporal
processes in a variety of contexts (for recent surveys,
see Ref. [1]). Recently, there has been great interest
in the use of CML models in the investigation of
global behaviors of networks of chaotic elements
[2-4]. Such collective phenomena have many impli-
cations ranging from the fundamentals of statistical
mechanics [5] to biological information processing,
and even possible practical applications [6].

In this Letter, we study the collective behavipr of
the one-dimensional CML system
%y (D) =f(x (D) + ¥ [ fx,(i= 1))

i) =2f(x ()] ()
where ¢ is a discrete time, / labels the lattice sites
(i=1,...,N), yisa parameter measuring the diffu-
sive coupling strength between neighboring sites,
and f is a map describing the local dynamics. Peri-
odic boundary conditions are assumed.

The collective behavior of the lattice can be moni-
tored through the instantaneous mean field or actic-

ity of the network, defined as the space average of
the local variables x(i) at time ¢ [2],

1 X

S, == x,(1). 2

=3 Ee )
A wide variety of local map functions f have been
employed in CML models depending on the particu-
lar application. Usually, bounded maps belonging to
some universality class are considered to be the
source of local chaos in the study of collective
spatiotemporal dynamics in CMLs with local [2,3] or
global couplings [4]. Here we investigate the collec-
tive behavior of the lattice described by (1) having
unbounded local dynamics such as the logarithmic
map [7]

f(x)=b+1Inl|x]| (3)

This map posseses no maximum or minimum and its
Schwarzian derivative is always positive. Two stable
fixed points satisfying f(x*)=x" exist for this
map: x; < ':1, for b < — 1, which becomes unsta-
ble at b="—1; and x, > 1, for b > 1, which arises
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from a tangent bifurcation at b = 1. Chaos occurs in
the parameter region b €[ — 1, 1]. There are no gaps
separating chaotic bands at any given value of b €
[—1,1] and no periodic windows appear in any
subinterval of & in this range [7]. These special
features, contrasting with the universal properties of
the commonly used local maps, make maps of the
type (3) an alternative tool for exploring the essential
requirements for the emergence of collective behav-
ior in CMLs and the generality of this phenomenon.

The dynamics of the CML (1) can be written in
vector form as

X =f(x)+yMf(x), (4)

where the N-dimensional vectors x, and f(x,) have
components [ x, 1, = x,(i) and [ f(x)]; = f(x,(i)), re-
spectively; and M is an N X N tridiagonal, symmet-
ric matrix expressing diffusive coupling among the
components [x,].. The non-zero components of M
are M, = —2; M,;=1(i=j%1).

With the local map (3), the stable, spatially homo-
geneous, stationary states x,(i)=x, for b< —1;
or x(i)=x,, for b>1, Vi, are possible for the
system (1). The linear stability analysis of these
states leads to the bifurcation conditions

(1+'Y#k)f'(x1*,z):i‘l~ (5)

where { u, 1 k=1,.... N} is the set of eigenvalues of
the coupling matrix M which satisfy u, €[—4, 0]
[8]. Egs. (5) yield boundary curves in the parameter
plane (y, b) which determine where each homoge-
neous, stationary state can be observed. Fig. 1 shows
the first stability boundaries for each state, corre-
sponding to u, = —4. The state x,(i)=x;, Vi, is
stable for parameter values in the region enclosed by
the r.h.s. + 1 boundaries corresponding to x;° in Eq.
(5), with b < —1. Similarly, the state x,(i)=x,,
Vi, is stable inside the parameter region bounded by
the r.h.s. +1 curves associated to x5, with b > 1.
Within these regions of stable homogeneous station-
ary states, the asymptotic values of the mean field
are §,=x, and S,=x,, respectively. The crossing
of either boundary signals the appearance of a spa-
tially inhomogeneous state which should be reflected
in a dispersion of S,.

When the value of the parameter b is in the range
[—1, 1], corresponding to local chaotic dynamics,
the asymptotic collective behavior of the lattice, as

04
S =1z} S =z3

i)

Fig. 1. Stability boundaries for the homogeneous stationary states
of the CML (1). The labels on each curve identify the first
stability boundaries with + 1 in Eq. (5) for each state, correspond-
ing to u, = —4. The vertical lines at b= —1 and b=1 corre-
spond to u, = 0. Curves associated with other eigenvalues lie
outside the regions enclosed by the boundaries shown. The states
,=x, and S, = x5 are stable inside the indicated regions.

given by S, , ., reveals the existence of global low-
dimensional periodic attractors, subjected to fluctua-
tions of intrinsic statistical origin. Fig. 2 shows the
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Fig. 2. Bifurcation diagram of the asymptotic S,, as a function of
the local parameter b. Coupling is fixed at y =0.5. For each
value of b, 100 iterates are shown, after discarding 5000 tran-
sients. Lattice size is N =10°. For b< —1 and b> 1, §, corre-
sponds to the values of the homogeneous stationary states x; and
x3 , tespectively.
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bifurcation diagram of the asymptotic mean field S,
as a function of the local parameter b. The quantity
S, was calculated at each time step during a run
starting from random initial conditions uniformly
distributed on the interval [ —8, 4] at each site and
for each value of b, after discarding the transients.
The coupling strength was fixed at y= 0.5, corre-
sponding to a ““totalistic’’ coupling of the ‘‘game of
life’” type [2]. Similar bifurcation diagrams can be
obtained for other fixed values of the coupling pa-
rameter.

For b < —1 or b> 1, the asymptotic mean field
is identical to the values of the corresponding fixed
points of the single map (3) in these ranges of b, as
expected from the stability diagram of the homoge-
neous stationary states in Fig. 1. In the region b€
[—1, 1], Fig. 2 shows a pitchfork bifurcation at a
value b, = —0.52 from a collective fixed point state
(a state for which the time series of S, manifestly
displays statistical fluctuations around a single value)
to a collective period-two state (a state for which the
time series of §, alternatively varies between the
corresponding neighborhoods of two separated val-
ues). The small vertical segments seen in Fig. 2 can
be interpreted as the amplitude of the fluctuations of
the mean field about the corresponding global attrac-
tor at given parameter values. The fluctuations around
the global stationary or the period-two attractors are
due to the fact that the local variables behave chaoti-
cally, as can be attested by the time series of any site
and by the existence of a positive largest Lyapunov
exponent.

The appearance of a period-two collective state in
the one-dimensional lattice (1) is related to the fact
that the iterates of the local map (3) move alterna-
tively from values above the unstable fixed point x|
to values below this point in the interval b€
[—1, b_], even though there are no separated chaotic
bands [9]. The iterates behave chaotically within
each side of the unstable fixed point x|, but period-
ically about it. The unstable fixed point x, estab-
lishes a ‘‘symmetry’’ line around which the iterates
oscillate with period two. For comparison, such an
effect does not occur in the unbounded map g(x) =
a— 1/x, which lacks unstable periodic orbits for
a €[ —2, 2J; consequently, no collective periodic be-
havior emerges in a coupled lattice of these maps at
that range of the parameter a [9].
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Fig. 3. (a) S, as a function of the coupling parameter y. Local
parameter is fixed at b = —0.8. For each value of y, 100 iterates

are shown, after discarding 5000 transients. Lattice size is N = 10°,
(b) Asymptotic iterates of site i = 100, for the same parameters as
in (a). The horizontal line corresponds to the value of the unstable
x, for the given b.

Coupling induces synchronization of the array in
the range b[—1, b, ], in the sense that iterates of
the local chaotic sites tend to move together above
and below the unstable fixed point x;° at alternate
time steps. The individual local values may be differ-
ent within each of these two regions at a given
instant. Fig. 3a presents the asymptotic mean field S,
as a function of the coupling strength 7y, keeping
constant b= —0.8. When vy is close to zero, and
starting each time from random initial conditions, S,
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Fig. 4. Asymptotic mean field §, as a function of lattice size N.
Fixed parameters are y = 0.5;b= —0.8.

fluctuates about an average value of the desynchro-
nized local maps. There exists a critical value of the
coupling at . = 0.01 where the transition from a
statistical average to a period-two collective state
takes place. The periodic behavior of S, remains
practically unchanged until the coupling reaches a
second critical value y, = (.53 at which synchroniza-
tion is again lost. Fig. 3b shows the asymptotic
behavior of an arbitrary individual site simultane-
ously monitored as a function of the coupling. The
value of the unstable fixed point x;° corresponding
to b= —0.8 is indicated by a horizontal line. Cou-
pling enhances the separation of alternate iterates
about x|°, creating a gap between them for ye [y,
Y, ]. The mean field reflects this separation as well as
the synchronization of the lattice produced by the
coupling.

Fig. 4 shows the dependence of the asymptotic S,
on the size of the lattice N, with the other parameters
held fixed (y=0.5, b= —0.8). There is a rather
small critical size N, = 10 at which the global pe-
riod-two attractor distinctively emerges. As in Fig 2,
the vertical segments represent fluctuations around
the global period-two attractor and they correspond
to even or odd steps of the asymptotic time series of
S,, respectively. The variance of either subset of
steps of the time series of S, decreases as N~ !, as
expected. However, the variance of the mean field
itself, for the chosen parameters, tends to a constant

value for large enough N. In the limit N — o, the
global period-two orbit will have the form S,: ... s,
S5y Sy+ §y... . The time average of the mean field
will be §= (s, +s,)/2, while the variance o will
yield

2 2 (6)

For the parameters of Fig. 4, s, = —2.55, 5, = 0.08.
The limiting value o = 1.72 is approached for N =
10°. The existence of a saturation value for the
variance of the mean field characterizes the emer-
gence of nontrivial (i.e. periodic, quasiperiodic, or
chaotic) collective behavior. This phenomenon has
been called ‘‘ violation of the law of large numbers’’
in the context of globally coupled maps belonging to
some universality class (tent, quadratic, or circle
maps) [4,10].

The onset of a periodic collective state at some
values of the parameters of the system is reminiscent
of a phase transition, because it corresponds to abrupt
changes in the statistical properties of the lattice, as
described by S, _, .., a quantity which acts as an order
parameter. We have found windows of global peri-
odic behavior in the space of parameters. Periodic
collective states have been observed in higher di-
mensional lattices of locally chaotic coupled maps.
In those cases, the collective behavior consists in
statistical cycling of the mean field (or the probabil-
ity density) among chaotic bands of the local one-
hump maps [2,3,11]. This paper shows that high
space dimension, large system size, strong coupling,
bounded iterates, gap-separated chaotic bands, or the
existence of periodic windows in the local dynamics,
are not essential requirements for the emergence of
nontrivial collective behavior. We have found that
coupling can synchronize the cycling of the chaotic
iterates and enhances their separation around unsta-
ble periodic orbits of the local maps in some parame-
ter ranges giving rise to periodic global behavior in a
lattice. Our results suggest that the emergence of
nontrivial collective behavior should be a rather
generic phenomenon in deterministic systems of cou-
pled chaotic elements, where unstable periodic orbits
are always present.
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