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ABSTRACT

We investigate the relationship between complexity, information transfer and the emer-
gence of collective behaviors, such as synchronization and nontrivial collective behavior,
in a network of globally coupled chaotic maps as a simple model of a complex system.
We calculate various quantities for this system: the mean field, a measure of statistical
complexity, the information transfer, as well as the information shared, between the macro-
scopic and local levels as functions of the strength of a coupling parameter in the system.
Our results show that the emergence of nontrivial collective behavior is associated to higher
values of complexity. Little transference of information from the global to the local level oc-
curs when the system settles into nontrivial collective behavior while no information at all
flows between these two scales in a synchronized collective state. As the parameter values
for the onset of nontrivial collective behavior or chaos synchronization are approached, the
information transfer from the macroscopic level to the local level is higher, in comparison
to the situation where those collective states are already established in the system. Our
results add support to the view of complexity as an emergent collective property that is
absent at the local level in systems of interacting elements.
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1 Introduction

In recent times, the study of complex systems has become a new paradigm for the search of a
unified description of the mechanisms for emergence of organization, structures and function-
ality in natural and artificial phenomena in diverse scenarios (Mikhailov and Calenbuhr, 2002;
Kaneko and Tsuda, 2000; Boccara, 2004). One common feature found among the prevalent
viewpoints on the meaning of complexity is emergent behavior: collective structures, patterns
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and functions that are absent at the local level arise from simple interaction rules between
the constitutive elements in a system. Phenomena such as the formation of spatial patterns,
collective oscillations, synchronization of chaos in spatiotemporal systems, spiral waves, seg-
regation and differentiation, growth of domains, motion of swarms, bird flocks, and fish schools,
opinion consensus, and economic crashes are examples of self-organizing processes that oc-
cur in various contexts such as physical, chemical, physiological, biological and social and
economic systems.
The phenomenon of synchronization, where all the state variables of a system converge to
a single trajectory in phase space, constitutes one of the simplest and more common collec-
tive behaviors occurring in networks of mutually interacting dynamical elements (Pecora and
Carroll, 1990; Pikovsky et al., 2002; Manrubia et al., 2004). In particular, the study of chaos
synchronization has provided insights into many natural processes and practical applications
such as secure communications and control of dynamical systems (Boccaletti et al., 2002;
Uchida et al., 2005; Argyris et al., 2005).
On the other hand, nontrivial collective behavior can also emerge in systems of interacting
chaotic elements (Chaté and Manneville, 1992). This phenomenon is characterized by an or-
dered evolution of macroscopic quantities coexisting with local chaos. Synchronization and
other collective behaviors in globally coupled oscillators are relevant in many chemical and
biological systems and have been experimentally investigated (Wang et al. 2000; De Monte
et al., 2007; Taylor et al., 2009). Models based on coupled map networks have been widely
used in the investigation of collective phenomena that appear in many complex systems (
Kaneko and Tsuda, 2000). In particular, nontrivial collective behavior occurs in networks of
coupled chaotic maps, such as regular Euclidean lattices (Chaté and Manneville, 1992), one-
dimensional lattices (Cosenza, 1995), fractal geometries (Cosenza, 1998), and globally cou-
pled systems (Kaneko, 1990; Shibata et al., 1999).
In this paper, we investigate the relationship between complexity and the emergence of col-
lective behaviors, such as synchronization and nontrivial collective behavior, in chaotic dy-
namical network models. We investigate the information transfer, as well as the information
shared, between the global and local levels of the network as a condition for complexity or self-
organization in spatiotemporal systems. Specifically, we address the questions: how much
information does a local unit possess about the collective dynamics of a system? or how do
the information flow and the complexity depend on parameters of a system?.
In Section 2, we present a globally coupled chaotic map network as a simple example of
a system of interacting nonlinear elements that shows emergent collective behaviors. We
calculate a measure of statistical complexity, introduced by López-Ruiz et al. (López-Ruiz et al.,
1995), as a function of a parameter of the system and show that the appearance of nontrivial
collective behavior is associated to higher values of complexity in comparison to those values
for synchronization or for disordered states. Similarly, we show that, as the parameter values
for the onset of nontrivial collective behavior or chaos synchronization are approached, the
information transfer from the macroscopic level to the local level is higher, in comparison to the
situation where those collective states are already established in the system. Our results are
discussed in the Conclusions.
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2 Characterization of the collective behavior of a network of coupled chaotic

maps.

We consider a system of N globally coupled chaotic maps, where the state of map i (i =

1, 2, . . . , N ) at discrete time t is denoted by xit. The evolution of the state of each map is
assumed to depend on its own local dynamics and on its interaction with all the other maps in
the system. Thus, we consider a network of maps subjected to a mean field global interaction
(Kaneko, 1990)

xit+1 = (1− ε)fi(x
i
t) +

ε

N

N∑
j=1

f(xjt ), (2.1)

where the function f(xit) describes the local dynamics of element i and ε is a parameter ex-
pressing the strength of the coupling. As local chaotic dynamics we choose a map belonging
to the family of singular maps f(xt) = b − |xt|z, where |z| < 1 and b is a real parameter
(Alvarez-Llamoza et al., 2008). These maps do not belong to the standard class of universality
of unimodal or bounded maps. They exhibit robust chaos, with no periodic windows in a finite
interval of the parameter b that depends on z, for |z| < 1. Robustness is an important property
in applications that require reliable operation under chaos in the sense that the chaotic behav-
ior cannot be destroyed by small perturbations of the system parameters. In this paper we
employ the value z = −0.25 for which the corresponding singular map displays robust chaotic
dynamics in the range b ∈ [0.9896, 1.6493] (Alvarez-Llamoza et al., 2008).
We shall use the following macroscopic quantities to characterize the emergence of collective
behavior in the system Eq. 2.1,

1. The instantaneous mean field,

St =
1

N

N∑
j=1

f(xjt ). (2.2)

2. The asymptotic time-average 〈σ〉 of the instantaneous standard deviations σt of the dis-
tribution of map variables xit, defined as

〈σ〉 = 1

T

τ+T∑
t=τ

σt, (2.3)

σt =

⎡
⎣ 1

N

N∑
i=1

⎛
⎝xit −

1

N

N∑
j=1

xjt

⎞
⎠

2⎤
⎦
1/2

, (2.4)

where τ is a number of discarded transients. A completely synchronized state in the
system Eq. 2.1 occurs when xit = xjt , ∀i, j. Stable synchronization corresponds to 〈σ〉 =
0.

3. The statistical complexity, defined as (López-Ruiz et al., 1995)

C = H ·D = −K

R∑
s=1

ps log ps ·
R∑

s=1

(
ps − 1

R

)2
, (2.5)
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where H is the entropy and D is the disequilibrium, a sort of distance to the equipartition
in a system; ps represents the probability associated to the state s; R is the number of
states that the system possesses at the given level of description, and K is a positive
normalization constant. Note that ps may vary for different levels of observation, reflected
in R. The measure C has been shown to be capable of discerning among different
macroscopic structures emerging in complex systems at a given scale (Sánchez and
López-Ruiz, 2005). Thus, according to this point of view, the level of complexity of a
system is given by the interplay between the entropy and the disequilibrium. For the
system Eq. 2.1, we shall consider the probability distribution of the states xit.

4. The information transfer from the dynamical variable yt to the variable xt in an interacting
system, is defined as (Shreiber, 2000)

Ty→x =
∑

xt+1,xt,yt

p (xt+1, xt, yt) log

(
p (xt+1, xt, yt) p (xt)

p (xt, yt) p (xt+1, xt)

)
, (2.6)

where p(xt) means the probability distribution of the time series xt, p(xt, yt) is the joint
probability distribution of xt and yt, and so on. The quantity Ty→x measures the degree of
dependence of x on y; i.e., the information required to represent the value xt+1 from the
knowledge of yt. Note that the information transfer is nonsymmetrical, i.e., Ty→x �= Tx→y.

5. The mutual information shared by two subsystems y and x is defined as (Shannon and
Weaver, 1949)

Mx,y =
∑
xt,yt

p (xt, yt) log

(
p (xt, yt)

p (xt) p (yt)

)
. (2.7)

The quantity Mx,y measures the overlap of the information content of the variables x

and y; it represents how much the uncertainty about x decreases if y is known. The
mutual information Mx,y is symmetrical and does not indicate the direction of the flow of
information between two interacting dynamical variables, as T does.

We consider the coupled map network, Eq. 2.1, for a system of size N = 105. The local
singular maps have exponent z = −0.25 and their parameter is fixed at b = 1.1, within the
robust chaos regime. Figure 1 shows the above macroscopic variables calculated as a function
of the coupling parameter ε for the system Eq. 2.1.
Figure 1(a) shows the bifurcation diagram of a map xit in this system as a function of ε. For each
value of ε, the value of xit is plotted at each time step during a run of 103 iterates starting from
random initial conditions on the local maps, uniformly distributed on the interval xi0 ∈ [−8, 2],
after discarding 103 transients. At the local level, the dynamics is chaotic over the entire range
of ε.
Figure 1(b) shows the bifurcation diagram of the mean field St for the system, Eq. 2.1, as
a function of ε. For the same initial conditions and discarded transients as in Fig. 1(a), 103

consecutive values of St were calculated for each value of ε. The mean field in Fig. 1(b)
reveals the presence of global periodic attractors for some range of the coupling parameter.
Different collective states emerge as a function of the coupling ε: a turbulent phase (T), where
St manifests itself as a global fixed point, a state where the time series of mean field fluctuates
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around a single value; collective periodic states coexisting with local chaos, corresponding to
nontrivial collective behavior (NTCB); collective chaotic bands (C); and chaotic synchronization
(S). In this representation, collective periodic states at a given value of the coupling appear as
sets of vertical segments which correspond to intrinsic fluctuations of the periodic oscillations
of the mean field. At a value ε = 0.04, a pitchfork bifurcation takes place from a statistical
fixed point to a collective period-two state, where the time series of St alternatingly moves
between the corresponding neighborhoods of two separated, well-defined values. Increasing
the coupling induces the emergence of collective states of higher periodicity. Global attractors
of period 2, 4, and 8 are visible in Figure 1(b). On the other hand, increasing the system size
N does not decrease the amplitude of the collective periodic orbits. Moreover, when N is
increased the widths of the segments that make a periodic orbit in the bifurcation diagrams
such as in Fig. 1(b) shrink, indicating that the global periodic attractors become better defined
in the large system limit. This phenomenon of nontrivial collective behavior is an example of
emergent behavior in a complex dynamical system.
Figure 1(c) shows the quantity 〈σ〉 versus ε for the system Eq. 2.1, averaged over a run of
T = 103 iterates after discarding τ = 104 transient for each value of ε. The turbulent phase
(T) corresponds to the state of lower coherence, manifested by the higher value of 〈σ〉 in this
region of the coupling parameter. There is a critical value ε = 0.32 at which 〈σ〉 drops to zero,
indicating that the chaotic elements in the system become synchronized (S).
Figure 1(d) shows the statistical complexity C of the mean field as a function of ε. Here, the
observation level was set at R = 64 × 103. When the value of ε is small, the mean field of
the system follows the standard statistical behavior of uncorrelated disordered variables that is
reflected in the single period in the bifurcation diagram of St. At the chosen level of resolution,
the complexity measure considers the macroscopical variable St as laying in a single state,
thus giving a small value of C in the region T. The complexity C remains small up to a critical
value of the coupling ε � 0.04, where C suddenly increases, resembling a phase transition.
As the periodicity of the collective orbit increases, more states are occupied by the probability
distribution of the mean field St. The probability distribution of St corresponding to a periodic
collective state is not uniform and consists of a set of distinct “humps”. A nonuniform probability
distribution and few occupied states lead to larger values of the complexity C, as observed in
the region NTCB. When the system enters chaotic collective band motion (C), more states are
occupied by the probability distribution of the mean field and therefore this probability becomes
more uniform. As a consequence, C decreases. In the region of chaotic synchronization (S),
the complexity is low. There, St = f(xit), ∀i, and therefore macroscopic behavior can be trivially
derived from the local behavior, yielding low complexity for the system, as one may expect. On
the other hand, Figure 1(d) shows that maximum complexity is associated to the emergence
of nontrivial collective behavior. The occurrence of ordered collective behavior in the coupled
map network, Eq. (2.1), cannot be attributed to the existence of windows of periodicity in the
local dynamics.
Figure 1(e) shows the information transfer TS→xi from the mean field St to one element xit in
the system, Eq. (2.1), as a function of ε. The number of states used to calculate the probability
distributions is 600. We observe that the information transfer is moderate in the turbulent region,
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where the local states are uncorrelated. In the region of nontrivial collective behavior, the flow
of information from the mean field to a local map decreases; the evolution of global and the
local variables become correlated, reflecting the appearance of self-organization in the system.
The information transfer TS→xi increases in the region of chaotic bands behavior and reaches
a maximum value just before the onset of synchronization. To achieve chaotic synchronization,
the flow of information from the global level to the local levels should be large. Once chaotic
synchronization is reached in the S region, the behavior of St is identical to that of the maps;
they do not longer depend on mean field signal. As a consequence, TS→xi vanishes in this
region.
Finally, Figure 1(f) shows the mutual information MS,xi between the mean field St and one
element xit in the system, Eq. (2.1), as a function of ε. In the turbulent and NTCB regions,
there is little similarity shared by the global and local variables in the system and MS,xi is
small. However, as the coupling ε increases, the variables become more correlated and the
mutual information reaches a maximum plateau in the synchronization region, as one may
expect when variables become identical.

3 Conclusions

We have calculated several quantities to characterize the emergence of collective behavior in
a system of coupled chaotic maps as a function of a parameter expressing the strength of
the coupling between the maps. We have employed maps displaying robust chaos as local
dynamics because the emergence of ordered collective behavior in this kind of dynamical
networks cannot be attributed to the existence of windows of periodicity at the local level, but
to the interactions between the constitutive elements.
The mean field contains relevant information about the collective behavior of the system. Our
results show that the emergence of nontrivial collective behavior in spatiotemporal systems is
associated to higher values of complexity in comparison to those values for synchronization
and for disordered states. The increase of complexity can be interpreted as a manifestation of
collective organization in the system.
Connectivity and coupling strengths are the mechanism for information exchange in networks
of dynamical units. We have found that little transference of information from the macroscopic
to the local level occurs when the system settles into nontrivial collective behavior and that no
information is transferred at all between these two scales in a synchronized collective state.
However, the information shared by the maps in the system is maximum at synchronization, as
one may expect. These results can be related to those of Cisneros et al. (Cisneros et al., 2002)
who showed that the prediction error used to measure the mutual prediction error between a
local and a global variable in a network of chaotic maps decreased when nontrivial collective
behavior arises in the system.
The information transfer that is required for the appearance of nontrivial collective behavior and
chaotic synchronization takes place at some specific values of the parameters of the system.
As the critical parameter values for the onset of nontrivial collective behavior or chaos synchro-
nization are approached, the information transfer from the macroscopic level to the local level
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is greater, in comparison to the situation where those collective states are already established
in the system. This result suggests that a surge of information flow from the global to local vari-
ables may serve as a predictor in parameter space for the occurrence of coherent or collective
behavior in complex systems.
Nontrivial collective behavior is a global property of the system that is neither present at the
local level nor induced externally. Our results add support to the view of complexity as an
emergent behavior in systems of interacting elements. Moreover, our results indicate that the
statistical complexity and the information transfer can be useful quantities to characterize the
transitions to various types of collective behaviors in dynamical chaotic networks and in other
complex systems of interacting elements.
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Figure 1: Various quantities to characterize the collective behavior of the system Eq. 2.1 as
a function of the coupling ε. Fixed local parameter is b = 1.1; local singularity exponent
z = −0.25; system size is N = 105. Random initial conditions on the local maps, uniformly
distributed on the interval xi0 ∈ [−8, 2] are used. (a) Bifurcation diagram of a map xit versus ε.
(b) Bifurcation diagram of the mean field St versus ε. The labels indicate T: turbulent, NTCB:
nontrivial collective behavior, C: collective chaotic bands, S: chaotic synchronization. (c) 〈σ〉
versus ε. (d) Statistical complexity C of the mean field versus ε. (e) Information transfer TS→xi

versus ε, averaged over 10 maps. (f) Mutual information MS,xi versus ε.
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