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MOTIVACIÓN

La misión de las cient́ıficas y cient́ıficos es comprender la realidad y

en la medida de lo posible ayudar a transformarla en beneficio de su

especie. Este principio que parece simple se transforma en un con-

junto de procesos de gran complejidad en las sociedades desarrolladas.

Comprender la realidad exige investigarla y ello supone diseñar un plan

para hacerlo, obtener los recursos, desarrollar el plan y si todo va bien

producir resultados reproducibles por otros grupos de investigación.

El Páıs Digital

21 Septiembre, 2004



IS THE CONTROL OF WAVES AND, MORE PARTICULARLY, OF

THE WAVE EQUATION RELEVANT?

The answer is, definitely, YES.



• Noise reduction in cavities and vehicles.

Closed-loop control diagram.

http://www.ind.rwth-aachen.de/research/noise reduction.html



• Quantum control and Computing.

Laser control in Quantum mechanical and molecular systems to

design coherent vibrational states.

In this case the fundamental equation is the Schrödinger one.

Most of the theory we shall develop here applies in this case too.

The Schrödinger equation may be viewed as a wave equation with

inifnite speed of propagation.



P. Brumer and M. Shapiro, Laser Control of Chemical reactions,

Scientific American, March, 1995, pp.34-39.



• Seismic waves, earthquakes.

F. Cotton, P.-Y. Bard, C. Berge et D. Hatzfeld, Qu’est-ce qui fait

vibrer Grenoble?, La Recherche, 320, Mai, 1999, 39-43.



http://earthquake.usgs.gov/hazards/probability.html



• Flexible structures.

Takoma, USA, 1940

http://astro.if.ufrgs.br/evol/takoma.htm



SIAM Report on “Future Directions in Control Theory. A Math-

ematical Perspective”, W. H. Fleming, ed., 1988.



• Environment.

The Thames barrier.



• Optimal shape design in aeronautics.

Optimal shape design of a “wing” within an Euler flow, for drag

reduction.



• El sistema cardiovascular humano



El bypass.



ELEMENTOS DE LA TEOŔIA MATEMÁTICA



THE 1-D CONTROL PROBLEM

The 1-d wave equation, with Dirichlet boundary conditions, describing
the vibrations of a flexible string, with control one one end:

ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T

y(x,0) = y0(x), yt(x,0) = y1(x), 0 < x < 1

y = y(x, t) is the state and v = v(t) is the control.

The goal is to stop the vibrations, i.e. to drive the solution to equi-
librium in a given time T : Given initial data {y0(x), y1(x)} to find a
control v = v(t) such that

y(x, T ) = yt(x, T ) = 0, 0 < x < 1.





THE 1-D OBSERVATION PROBLEM

The control problem above is equivalent to the following one, on the
adjoint wave equation:

utt − uxx = 0, 0 < x < 1, 0 < t < T
u(0, t) = u(1, t) = 0, 0 < t < T

u(x,0) = u0(x), ut(x,0) = u1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E(t) =
1

2

∫ 1

0

[
|ux(x, t)|2 + |ut(x, t)|2

]
dx = E(0), ∀0 ≤ t ≤ T.

The question is then reduced to analyze whether the folllowing in-
equality is true. This is the so called observability inequality:

E(0) ≤ C(T )
∫ T

0
|ux(1, t)|2 dt.



The answer to this question is easy to gues: The observability in-
equality holds if and only if T ≥ 2.

Wave localized at t = 0 near the extreme x = 1 that propagates with
velocity one to the left, bounces on the boundary point x = 0 and
reaches the point of observation x = 1 in a time of the order of 2.



This observability inequality is easy to prove by several means.

• Use D’Alambert’s formula

u = f(x + t) + g(x− t)

indicating that information propagates along rays with velocity
one, and bounces on the boundary points.

• Use the Fourier representation of solutions in which it is clearly
seen that solutions are periodic with time-period 2.

• Multipliers: Multiply the equation by xux, ut and u and integrate
by parts....



CONSTRUCTION OF THE CONTROL:

Once the observability inequality is known the control is easy to char-
acterize. Following J.L. Lions’ HUM (Hilbert Uniqueness Method),
the control is

v(t) = ux(1, t),

where u is the solution of the adjoint system corresponding to initial
data (u0, u1) ∈ H1

0(0,1)× L2(0,1) minimizing the functional

J(u0, u1) =
1

2

∫ T

0
|ux(1, t)|2dt+

∫ 1

0
y0u1dx− < y1, u0 >H−1×H1

0
,

in the space H1
0(0,1)× L2(0,1).

Note that J is convex. The continuity of J in H1
0(0,1) × L2(0,1) is

guaranteed by the fact that ux(1, t) ∈ L2(0, T ) (hidden regularity).



Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY.

CONCLUSION:

The 1-d wave equation is controllable from one end, in time 2, twice

the length of the interval.

Similar results are true in several space dimensions. The region in

which the observation/control applies needs to be large enough to

capture all rays of Geometric Optics.



THE PROBLEM:

EFFICIENTLY COMPUTE NUMERICALLY THE CONTROL!

WARNING ! TWO DIFFERENT ISSUES:

When a continuous model, written in PDE terms, is controllable, two

important issues arise in the context of Numerical Simulation:

• Efficiently compute numerically the control.

• To control a discrete model, a numerical discretized version of

the continuous model.



Both problems are relevant, but they may provide different results.

Both approaches are often mixed in the literature (leading to uncertain

results....)



A FACT

THE PROCESSES OF CONTROL AND NUMERICS DO NOT

COMMUTE

CONTROL+NUMERICS 6= NUMERICS+CONTROL

FROM FINITE TO INFINITE DIMENSIONS IN PURELY CONSER-

VATIVE SYSTEMS.....



FANTASMAS NUMÉRICOS



THE SEMI-DISCRETE PROBLEM: 1−D.

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0,1] into N +1 subintervals Ij = [xj, xj+1], j = 0, ..., N.

Finite difference semi-discrete approximation of the wave equation:
u′′j −

1
h2

[
uj+1 + uj−1 − 2uj

]
= 0, 0 < t < T, j = 1, . . . , N

uj(t) = 0, j = 0, N + 1, 0 < t < T

uj(0) = u0
j , u′j(0) = u1

j , j = 1, . . . , N.





The energy of the semi-discrete system (obviuosly a discrete version

of the continuous one)

Eh(t) =
h

2

N∑
j=0

[
| u′j |

2 +
∣∣∣∣uj+1 − uj

h

∣∣∣∣2
]

.

It is constant in time.

Is the following observability inequality true?

Eh(0) ≤ Ch(T )
∫ T

0

∣∣∣∣∣uN(t)

h

∣∣∣∣∣
2

dt

(
−

uN(t)

h
=

uN+1 − uN(t)

h
∼ ux(1, t).

)
YES! It is true for all h > 0 and for all time T .



BUT, FOR ALL T > 0 (!!!!!)

Ch(T ) →∞, h → 0.

THE FOLLOWING “INTUITIVE” CONJECTURE IS COMPLETELY

FALSE:

* The constant Ch(T ) blows-up for T < 2 as h → 0 since the inequality

fails for the wave equation.

* The constant Ch(T ) remains bounded for T ≥ 2 as h → 0 and one

recovers in the limit the observability inequality for the wave equation.



CONCLUSION

The classical convergence (consistency+stability) does not guarantee

continuous dependence for the observation problem with respect to

the discretization parameter.

WHY?

Convergent numerical schemes do reproduce all continuous waves but,

when doing that, they create a lot of spurious (non-realistic, purely

numerical) high frequency solutions. This spurious solutions distroy

the observation properties and are an obstacle for the controls to

converge as the mesh-size gets finer and finer.



SPECTRAL ANALYSIS

Eigenvalue problem

− 1
h2

[
wj+1 + wj−1 − 2wj

]
= λwj, j = 1, . . . , N

w0 = wN+1 = 0.

The eigenvalues 0 < λ1(h) < λ2(h) < · · · < λN(h) are

λh
k =

4

h2
sin2

(
kπh

2

)
and the eigenvectors

wh
k =

(
wk,1, . . . , wk,N

)T
: wk,j = sin(kπjh), k, j = 1, . . . , N.

It follows that

λh
k → λk = k2π2, as h → 0



and the eigenvectors coincide with those of the wave equation.

Then, the solutions of the semi-discrete system may be written in
Fourier series as follows:

~u =
N∑

k=1

ak cos
(√

λh
kt

)
+

bk√
λh

k

sin
(√

λh
kt

) ~wh
k .

Compare with the Fourier representation of solutions of the continu-
ous wave equation:

u =
∞∑

k=1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx)

The only relevant difference is that the time-frequencies do not quite
coincide, but they converge as h → 0.



DISPERSION DIAGRAM: LACK OF GAP.

Graph of the square roots of the eigenvalues both in the continuous

and in the discrete case. The gap is clearly independent of k in the

continuous case while it is of the order of h for large k in the discrete

one.



SPURIOUS NUMERICAL SOLUTION

~u = exp
(
i
√

λN(h) t

)
~wN − exp

(
i
√

λN−1(h) t

)
~wN−1.

Spurious semi-discrete wave combining the last two eigenfrequencies

with very little gap: √
λN(h)−

√
λN−1(h) ∼ h.



h = 1/61, (N = 60), 0 ≤ t ≤ 120. The solution exhibits a time-
periodicity property with period τ of the order of τ ∼ 50 which con-
tradicts the time-periodicity of period 2 of the wave equation. High
frequency wave packets travel at a group velocity ∼ h.







GAP

=

GROUP VELOCITY

=

VELOCITY OF PROPAGATION OF HIGH

FREQUENCY WAVE PACKETS.



WHAT IS THE REMEDY?

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k ≤ δ/h with 0 < δ < 1.

Filtering restablishes the gap condition, then waves propagate with
a speed which is uniform with respect to h and the observability
inequality becomes uniform too.



√
λh

k −
√

λh
k−1 ≥ π cos

(
πδ

2

)
> 0, for k ≤ δh−1.

This can be done rigorously with the aid of

Ingham’s Theorem. (1936) Let {µk}k∈Z be a sequence of real
numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z.

Then, for any T > 2π/γ there exists C(T, γ) > 0 such that

1

C(T, γ)

∑
k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣∣
∑
k∈Z

akeiµkt

∣∣∣∣∣∣
2

dt ≤ C(T, γ)
∑
k∈Z

| ak |2

for all sequences of complex numbers {ak} ∈ `2.



CONCLUSION.

Given any T > 2, choose 0 < δ < 1 such that

T > 2/ cos
(

πδ

2

)
or δ >

2

π
arccos(2/T ).

The choice of 0 < δ < 1 is obviously possible since 2/T < 1.

Then, we can control UNIFORMLY ON h the solution PARTIALLY:

πδ(y(T ), yt(T )) = 0

and

the numerical controls vh → v, the control of the wave equation.



Plot of the initial datum to be controlled for the string occupying
the space interval 0 < x < 1.

Plot of the time evolution of the exact control for the wave equation
in time T = 4.



Without filtering, the control diverges as h → 0.



With appropriate filtering the control converges as h → 0.



ULTIMATE GOAL

To develop a class of numerical schemes (new or not) for which the
convergence of controls might be guaranteed a priori with minimal
computational cost.

The most natural approaches (finite differences and FINITE ELE-
MENTS) do not work and they have to be complemented with other
strategies:

* filtering of high frequencies, * mixed finite elements,

* multi-grid algorithms, * wavelets,

* numerical viscosity,...



MIXED FINITE ELEMENTS

Square roots of the eigenvalues both in the continuous and in the

discrete case with mixed finite elements. The gap of the discrete

problem is uniform with respect to j and h and, in fact, tends to

infinity for the highest frequencies as h → 0.



THE CONTROL PROBLEM IN SEVERAL SPACE DIMENSIONS

The same problems arise in several space dimensions:

Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class
C2. Let Γ0 be an open and non-empty subset of Γ and T > 0.

ytt −∆y = 0 in Q = Ω× (0, T )
y =v(x, t)1Γ0

on Σ = Γ× (0, T )
(x,0) = y0(x), yt(x,0) = y1(x) in Ω.

The problem of controllability, generally speaking, is as follows: Given
(y0, y1) ∈ L2(Ω) × H−1(Ω), find v ∈ L2(Γ0 × (0, T )) such that the
solution of system (3.1) satisfies

y(T ) ≡ yt(T ) ≡ 0.



The answer is by now well known (Bardos-Lebeau-Rauch, Burq-

Gérard, Ralston,....):

The wave equation is controllable from Γ0 in time T if all rays of

Geometric Optics intersect Γ0 in a time less than T at a non-difractive

point.

This statement is an extension of the one above on the 1-d wave

equation. But this time the proof requires much more sophisticated

tools: Microlocal analysis, the propagation of microlocal deffect mea-

sures,...



Rays propagating inside the domain Ω following straight lines that are

reflected on the boundary according to the laws of Geometric Optics.

The control region is the red subset of the boundary. The GCC is

satisfied in this case.



The Geometric Control Condition is not satisfied, whatever T > 0 is,
in the square domain when the control is located on a subset of two
consecutive sides of the boundary, leaving a subsegment uncontrolled.
There is an horizontal a ray that bounces back and forth for all time
perpendicularly on two points of the vertical boundaries where the
control does not act.



In all cases the control is equivalent to an observation problem for

the adjoint wave equation:
utt −∆u = 0 in Q = Ω× (0, T )
u = 0 on Σ = Γ××(0, T )
u(x,0) = u0(x), ut(x,0) = u1(x) in Ω.

Is it true that:

E0 ≤ C(Γ0, T )
∫
Γ0

∫ T

0

∣∣∣∣∂u

∂n

∣∣∣∣2dσdt ?

And a sharp discussion of this inequality requires of Microlocal anal-

ysis. Partial results may be obtained by means of multipliers: x · ∇u,

ut, u,...



THE 5-POINT FINITE-DIFFERENCE SCHEME

u′′j,k −
1

h2

[
uj+1,k + uj−1,k − 4uj,k + uj,k+1 + uj,k−1

]
= 0.

The energy of solutions is constant in time:

Eh(t) =
h2

2

N∑
j=0

N∑
k=0

| u′jk(t) |2 +

∣∣∣∣∣uj+1,k(t)− uj,k(t)

h

∣∣∣∣∣
2

+

∣∣∣∣∣uj,k+1(t)− uj,k(t)

h

∣∣∣∣∣
2
 .

Without filtering observability inequalities fail in this case too.



Understanding how filtering should be used requires of a microlo-

cal Analysis of the propagation of numerical waves. F. Macià

(Ph. D. Thesis, Madrid, 2002) combining von Neumann analysis

and Wigner measures developments (P. Gérard, P. L. Lions & Th.

Paul, G. Lebeau, ...). Most of the results that this analysis yields

were previously predicted by N. Trefethen.



Through the von Neumann analysis one can define the discrete rays

along which energy propagates. This indicates that the filtering has

to be eprformed according to the following figure:



RETOS Y PERSPECTIVAS



• Geometry.

We have seen that geometry enters through the notion of bichar-

acteristic rays for the control of continuous wave phenomena.

But we have also seen that it enters in the Fourier space for

filtering.

The interaction of these two geometric aspects may be become

rather complex, especially, for irtregular domains and meshes.





• More complex models

We have analyzed purely conservative models like the wave equa-

tion. But nature is more complex: thermoelasticity, viscoelastic-

ity,...

The intrinsic dissipativity of these models has the tendency of

damping out the spurious numerical high frequence components.

But not enough to guarantee convergence at the control level!



• Unique continuation for the discrete Laplacian.

The eigenvector for the 5−point finite-difference scheme for the

Laplacian in the square, with eigenvalue λ = 4/h2, taking values

±1 along a diagonal, alternating sign and vanishing everywhere

else in the domain.



Ah~ϕ = λ~ϕ

ϕj = 0, ∀j ∈ ωh

⇒ ϕ ≡ 0?

The problem arises in a much more general context: general ge-
ometries, finite elements, heat and wave equations,....

Generally speaking: What is the tool needed to analyze whether
the fact that a solution of a discrete or semi-discrete system van-
ishes in a certain number of nodes, implies that the solution van-
ishes everywhere?

What is the discrete counterpart of Holmgren’s Uniqueness The-
orem or of Carleman’s inequalities?



• Inverse Problems

Inverse Problems are a mathematical topic related to environmen-

tal science, water pollution and they would also be of interest to

any oil company. They can also arise when considering a medical

question, or analysing medical equipment, for example, a medical

specialist might want to know about tomography and scanning.

http://www.inverse-problems.com/

• Shape design,...

Recall that design optimization essentially combines mathemat-

ical optimization algorithms with engineering analysis models to



generate designs with improved performance. In product develop-

ment this approach is useful for products with a large number of

interdependent design decisions or for new products where signif-

icant experience has not yet been accumulated. Current efforts

are directed primarily towards complex and new technology prod-

ucts, and the augmentation of engineering analysis models with

business or ”enterprise” performance models, so that optimiza-

tion results become more meaningful to management and the

end users.

http://ode.engin.umich.edu/research.html



CONCLUSIONS:

• CONTROL AND NUMERICS DO NOT COMMUTE

• MUCH REMAINS TO BE DONE, BY COMBINING THE VAR-

IOUS AREAS OF MATHEMATICS, TO PROVIDE A COM-

PLETE ANSWER TO THESE PROBLEMS AND A COMPLETE

UNDERSTANDING OF ALL ITS CONSEQUENCES.


