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We investigate the emergence of chimera and cluster states possessing asymmetric dynamics in
globally coupled systems, where the trajectories of oscillators belonging to different subpopulations
exhibit different dynamical properties. In an asymmetric chimera state, the trajectory of an element
in the synchronized subset is stationary or periodic, while that of an oscillator in the desynchronized
subset is chaotic. In an asymmetric cluster state, the periods of the trajectories of elements belonging
to different clusters are different. We consider a network of globally coupled chaotic maps as a
simple model for the occurrence of such asymmetric states in spatiotemporal systems. We employ
the analogy between a single map subject to a constant drive and the effective local dynamics in the
globally coupled map system to elucidate the mechanisms for the emergence of asymmetric chimera
and cluster states in the latter system. By obtaining the dynamical responses of the driven map, we
establish a condition for the equivalence of the dynamics of the driven map and that of the system of
globally coupled maps. This condition is applied to predict parameter values and subset partitions
for the formation of asymmetric cluster and chimera states in the globally coupled system.

I. INTRODUCTION

There is currently great interest in the investigation of
the emergence of states possessing broken synchroniza-
tion symmetry in systems of coupled identical oscilla-
tors. Such behavior, called a chimera state, consists of
the coexistence of synchronized and desynchronized sub-
sets of oscillators within the system. Initially recognized
in networks of nonlocally coupled phase oscillators [1, 2],
chimera states have also been found in systems with local
interactions [3–6] and have been investigated in diverse
models, including coupled map lattices [7, 8], Van der Pol
oscillators [9], chaotic flows [10], neural systems [11, 12],
quantum systems [13], lasers [14], population dynamics
[15], and Boolean networks [16]. Experimental observa-
tions of chimera states have been made in coupled popu-
lations of chemical oscillators [17, 18], coupled lasers [19],
optical light modulators [20], electronic [21], mechani-
cal [22–24], and electrochemical [25] oscillator systems.
Chimera states may be relevant in real-world phenom-
ena such as the unihemispheric sleep in birds and dol-
phins [26], epileptic seizures [27], neuronal bump states
[28], social systems [29], and power grids [30].

Chimera states have been recently found in systems
with global interactions [31–35]. A chimera behavior was
observed earlier by Kaneko in a globally coupled map
network [36]; it consisted of the coexistence of one syn-
chronized cluster and a cloud of desynchronized elements.
These works have revealed that chimera states appear
related to the clustering phenomenon typically exhibited
by globally coupled systems, where the system splits into
distinguishable clusters of synchronized elements.

In most observed chimera states, the dynamics of the
trajectories of the oscillators in the synchronized or in the
desynchronized subsets are similar; they are both chaotic
or both periodic. In this paper, we investigate the emer-
gence of chimera states possessing asymmetric dynamics,
in the sense that the dynamical evolution of oscillators
belonging to the synchronized or the desynchronized sub-

set are different: the trajectory of an oscillator in the syn-
chronized subset is periodic or stationary, while that of
an oscillator in the desynchronized subset is chaotic. The
coexistence of synchronized and desynchronized subsets
with periodic and chaotic dynamics represents a further
breaking of the synchronization symmetry in a homoge-
neous system. Similarly, we study asymmetric cluster
states, where the periods of the trajectories of elements
from different clusters are different.

We consider a network of globally coupled chaotic
maps as a simple model for the occurrence of asymmetric
chimera and cluster dynamics in spatiotemporal systems.
We employ the analogy between a single map subject to
a constant drive and the effective local dynamics in a
globally coupled system of maps to uncover the mecha-
nisms for the emergence of asymmetric chimera and clus-
ter states in the latter system. These asymmetric states
can arise in the presence of robust chaos in the local
maps. In Sec. II we investigate the dynamical responses
of a single map driven by a constant and characterize
them on the space of parameters of this system. We es-
tablish a condition for the equivalence of the dynamics
of a steadily driven map and that of a system of glob-
ally coupled maps. In Sec. III we apply this condition
to predict asymmetric chimera and cluster states, and
other collective behaviors, in the globally coupled sys-
tem. Conclusions are presented in Sec. IV.

II. GLOBALLY COUPLED SYSTEMS

A global interaction in a system occurs when all its
elements are subject to a common influence or field. A
global field may consist of an external source acting on
the elements, as in a driven system; or it may origi-
nate from the interactions between the elements, in which
case, we have an autonomous system. As a simple model
of an autonomous dynamical system subject to a global
interaction, we consider a globally coupled map (GCM)
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system in the form

xit+1 = (1− ε)f(xit) + εht, (1)

ht =
1

N

N∑
j=1

f(xjt ). (2)

where xit describes the state variable of the ith map (i =
1, 2, . . . , N) in the system at discrete time t; f expresses
the local dynamics of the maps; ht is a global interaction
function, corresponding to the mean field of the system
in Eq. (2), and the parameter ε represents the strength
of the coupling of the maps to the field. The coupling in
Eq. (1) is assumed in the usual diffusive form.

Several collective states of synchronization can be de-
fined in the system Eq. (1):

(i) Synchronization at time t takes place if xit = xjt ,
∀i, j in the system.

(ii) A desynchronized or incoherent state occurs when

xit 6= xjt ∀i, j in the system.
(iii) Cluster state. A dynamical cluster is a subset of

elements that are synchronized among themselves. In a
cluster state, the N elements in the system segregate into
M distinct subsets that evolve in time; i.e., xit = xjt =
Xµ
t , ∀i, j in the µth cluster, with µ = 1, . . . ,M . We call

nµ the number of elements belonging to the µth cluster;
then its relative size is pµ = nµ/N .

(iv) A chimera state consists of the coexistence of one
or more clusters and a subset of desynchronized elements.
If there are M clusters, the fraction of elements in the

system belonging to clusters is p =
∑M
µ=1 pµ, while the

number of desynchronized elements is (1−p)N . As local

FIG. 1: (a) Map xt+1 = f(xt) with f in Eq. (3) for different
values of the parameter r: r = 2, blue line; r = 3, green line;
r = 3.5, magenta line. (b) Bifurcation diagram of the map
Eq. (3) as a function of r.

dynamics in the GCM system Eq. (1), we shall consider
the smooth chaotic map [37],

f(x) = sin2
(
r arcsin(

√
x)
)
, (3)

defined on the interval x ∈ [0, 1] for parameter values
r > 1. For r = 2, the map f is unimodal and possesses
negative Schwarzian derivative, Sf < 0. As the parame-
ter r increases, the number of maxima of f increases as
well, as shown in Fig. 1(a). Figure 1(b) shows the bifur-
cation diagram of the iterates xt+1 = f(xt) of map f as

a function of the parameter r. The dynamics exhibits ro-
bust chaos with no periodic windows for r > 1 and fully
developed chaos for r ≥ 2. The corresponding Lyapunov
exponent is λ = ln r [37].

III. DRIVEN MAP DYNAMICS

At the local level, each map in the autonomous GCM
system Eqs. (1) can be seen as subject to a field that
eventually induces a collective state. Then, under some
conditions, the local dynamics of the GCM system should
be comparable to that of a single map driven by an ex-
ternal signal in the form [38]

st+1 = (1− ε)f(st) + εg(yt), (4)

yt+1 = g(yt). (5)

where st is the state of the driven map at discrete time
t, f is the same function describing the local dynamics
in Eq. (1), and the function g(yt) expresses the influence
of the external drive yt.

In general, an analogy between an autonomous GCM
system Eq. (1) and a driven map Eq. (4) arises when the
time evolution of the global field ht is identical to that of
the drive function g(yt) [38, 39]. Then, the corresponding
local dynamics in both systems are similar, and therefore
the evolution of any element xti in the GCM system can
be equivalent to that of the driven map for some values
of parameters and for appropriate initial conditions.

Our basic idea is that, by knowing the dynamics of
a single driven map, one can infer collective behaviors
that can appear in a GCM system with equivalent local
dynamics. In particular, we can investigate properties
induced by the external drive that conduce to cluster
and chimera states in an equivalent GCM system. The
simplest situation where the driven map analogy can be
used arises when the drive function is constant, g(yt) = k;
that is,

st+1 = (1− ε)f(st) + εk. (6)

Then, the equivalence corresponds to a GCM system
evolving such that its global field remains constant, ht =
k. Thus, we shall search for collective states in the GCM
system that satisfy this condition.

Figures 2(a)-(b) show bifurcation diagrams of the
driven map st in Eq. (6) as a function of the coupling
parameter ε for different values of the parameters r and
k. For r = 2, when the local map f is unimodal, the typ-
ical period-doubling bifurcation structure is observed in
Fig. 2(a), which is expected since the driven map st is also
unimodal and its the Schwarzian derivative is negative.
For r = 3.5, f is multimodal and the bifurcation diagram
of the driven map Eq. (6 displays period-doubling as well
as regions of bistability, as seen in Fig. 2(b). The bista-
bility consists of the coexistence of a fixed point with a
periodic orbit, or the coexistence of a fixed point or pe-
riodic orbit with a chaotic attractor. In regions where
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FIG. 2: Top panels: Bifurcation diagrams for the driven map
Eq. (6) as a function of ε with fixed values of r and k; (a) r = 2,
k = 0.66; (b) r = 3.5, k = 0.88. Bottom panels: Phase dia-
grams on the plane (k, ε) for the driven system Eqs. (7) with
size N = 1000 and fixed r; (c) r = 2; (d) r = 3.5. For each
data point we calculate the mean values 〈p〉 and 〈σ〉 by averag-
ing over 100 realizations of initial conditions, after discarding
104 transients in each realization. For each realization, initial
conditions si0 are randomly and uniformly distributed on the
interval [0, 1]. The values of 〈p〉 are indicated by a color code;
white corresponds to synchronization. Labels identify regions
of collective states: S, synchronization; C, cluster states; Q,
asymmetric chimera states; D, desynchronization.

bistability is induced by the drive, different initial con-
ditions s0 can reach different attractors. To explore the
evolution of different initial conditions, we consider N
replicas of the driven map Eq. (6) or, equivalently, a sys-
tem of N globally driven maps, given by

sit+1 = (1− ε)f(sit) + εk. (7)

where sit (i = 1, 2, . . . , N) describes the state variable
of the ith replica map in the system at time t. We
can search for states of synchronization emerging in the
driven system of Eqs. (7) analogous to those defined for
the autonomous GCM system of Eqs. (1), employing sit
variables instead of xit.

Statistically, the collective states of synchronization
can be characterized through two quantities: (i) the mean
value 〈p〉 of the fraction of elements that belong to some
cluster, and (ii) the mean value 〈σ〉 of the standard devi-
ation of the distribution of state variables, both obtained
by averaging over several realizations of initial conditions
and after discarding a number of transients in each real-
ization [35]. Then, a synchronization state corresponds
to the values 〈p〉 = 1 and 〈σ〉 = 0, while a cluster state
is given by 〈p〉 = 1 and 〈σ〉 > 0. A chimera state is
described by pmin < 〈p〉 < 1 and 〈σ〉 > 0. Here we set

pmin = 0.05, as the minimum cluster size to be taken
into consideration. An incoherent state possesses values
〈p〉 < pmin and 〈σ〉 > 0.

Figures 2(c)-(d) show the collective behavior of the
driven map system Eqs. (7) on the space of parameters
(k, ε), characterized through the quantities 〈p〉 and 〈σ〉.
Figure 2(c) corresponds to the parameter value r = 2
for which the map f is unimodal. We observe regions
of parameters where synchronization, cluster states, and
desynchronization occur. In Fig. 2(d), corresponding to
the parameter value r = 3.5 for which f is multimodal,
the system of Eqs. (7) exhibits synchronization, cluster
states, desynchronization, as well as chimera states for
some regions (k, ε). These behaviors are associated to
the appearance of a fixed point, periodic windows, chaos,
and bistability, respectively, in the bifurcation diagrams
of the driven local map, as seen in Figs. 2(a)-(b).

Suppose that a GCM system Eq. (1) reaches a state
such that the evolution of its global field ht remains con-
stant, ht = k. In this case, the dynamics of an element
xit in the GCM can be described by a single map subject
to a constant force k, and the GCM system should be
analogous to a system of N driven maps Eqs. (7); i. e.,
xit = sit. The values sit depend on the parameters ε, k,
and r. Thus, the local dynamics of an autonomous GCM
system and the driven map can be equivalent if condi-
tion ht(s

i
t(r, ε, k)) = k is satisfied. This is the simplest

expression of the equivalence between a driven map and
an autonomous GCM system. For the mean field ht, this
condition is

1

N

N∑
i=1

sit(r, ε, k) = k, (8)

where the possible values of sit(r, ε, k) are the iterates st
of the single driven map for parameters (r, ε, k).

IV. ASYMMETRIC CLUSTER AND CHIMERA
DYNAMICS IN GLOBALLY COUPLED MAPS

Given a period-M orbit {s∗1, s∗2, . . . , s∗M} in the dynam-
ics of the single driven map, different initial conditions
si0 can lead to different orderings of this orbit. Then, a
periodic cluster state consisting of M clusters, each of
period M and moving out of phase with respect to each
other, can emerge in the driven system of maps Eqs. (7).
In general, the formation of periodic cluster states in the
driven system of Eqs. (7) is related to the presence of a
unique periodic attractor for given parameter values in
the single driven map. A steadily driven map Eq. (6) will
have a unique asymptotic orbit whenever the local map f
is unimodal and Sf < 0, according to Singer’s theorem.
This is the case for the parameter value r = 2.

On the other hand, for values of r such that f is multi-
modal and the driven map Eq. (6) exhibits multistability,
there can appear cluster and chimera states in the driven
system of Eqs. (7) possessing partitions with asymmet-
ric dynamical behavior. In an asymmetric cluster state,
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maps belonging to different clusters have dynamical tra-
jectories with different periods. The occurrence of such a
state in the driven system of Eqs. (7) requires the coex-
istence of two or more periodic attractors with different
periods in the dynamics of the single driven map. In
an asymmetric chimera state, an element from the syn-
chronized subset describes a fixed point or periodic orbit
while an element from the desynchronized subset moves
chaotically. This state arises from the coexistence of a
fixed point or periodic attractor and a chaotic attractor
in the driven map.

Equation (8) can be employed to predict parameter
values or subset partitions for the emergence of the above
states in the GCM system Eqs. (1) compatible with the
condition of a constant mean field.

For a periodic cluster state, the condition ht = k
takes place in the GCM system when M clusters, each
having N/M elements in a period-M orbit Xµ

t =
{X1, X2, . . . , XM}, are evolving out of phase with respect
to each other in order to yield a constant value k for the
mean field ht. For this state, condition Eq. (8) becomes

1

M

M∑
j=1

s∗j (r, ε, k) = k. (9)

where {s∗1, s∗2, . . . , s∗M} are the points on a unique period-
M orbit in the single driven map. As an example, let
s∗1(ε, k), s∗2(ε, k) be the points on the period-two window
in Fig. 2(a) with parameter r = 2. Then, Eq. (9) gives

1

2
[s∗1(ε, k) + s∗2(ε, k)] = k. (10)

For k = 0.66 both s∗1(ε, k) and s∗2(ε, k) are obtained as
functions of ε from the bifurcation diagram in Fig. 2(a).
Then Eq. (10) can be solved numerically for ε. This yields
the value ε = 0.29 for which a cluster state comprising
two equal-size clusters in period-two, out-of-phase orbits
{X1 = s∗1, X2 = s∗2} such that ht = 0.66, emerges in the
GCM system.

Consider an asymmetric cluster state in the GCM sys-
tem composed of a fraction of p elements in one cluster on
a fixed point and a fraction of 1− p elements distributed
in M identical-size, out-of-phase, period-M clusters such
that ht = k. For this behavior to take place in the GCM
system, condition (8) becomes

ps∗ +
(1− p)
M

M∑
j=1

s∗j (r, ε, k) = k, (11)

where {s∗1, s∗2, . . . , s∗M} are the points in a period-M orbit
coexisting with a fixed point s∗ of the single driven map
Eq. (6). As an application of Eq. (11), consider the bi-
furcation diagram of the single driven map with r = 3.5
and for constant drive k = 0.88 shown in Fig. 2(b). For
the coupling parameter value ε = 0.48 there is bistability
between a fixed point s∗ = 0.94 and a period-two orbit

comprising the points s∗1 = 0.4 and s∗2 = 0.645. Then,
from Eq. (11) with M = 2 we get the fraction

p =
2k − (s1 + s2)

2s∗ − (s1 + s2)
, (12)

which for the given values of the variables yields p = 0.86.
Thus, an asymmetric three-cluster state composed of one
fixed point cluster of relative size p = 0.86 and two out-of-
phase period-two clusters, each of relative size 0.07, and
such that ht = k = 0.88 can emerge in the GCM system
of Eqs. (1) for parameter values r = 3.5 and ε = 0.48.

An asymmetric chimera state consisting of a fraction
of p maps synchronized on a fixed point X∗ and a frac-
tion of 1− p desynchronized chaotic maps, evolving with
constant ht = k, can arise in the GCM system if the
following condition is satisfied

ps∗ +
1

N

(1−p)N∑
j=1

sj(r, ε, k) = k, (13)

where s∗ = X∗ is the fixed point and the sj are iterates
of the single driven map belonging to a chaotic attractor
coexisting with s∗. If p is large enough, the sum term
expressing the contribution of the desynchronized chaotic
orbits reaches a mean value with small fluctuations, and
condition (13) can be fulfilled with good approximation.
As an example, from the bifurcation diagram in Fig. 2(b)
for k = 0.88 we choose the bistable behavior occurring at
ε = 0.38, where the fixed point s∗ = 0.95 and a chaotic
band attractor coexist in the single driven map. We can
roughly approximate the sum term in Eq. (13) by the
quantity (1 − p)sc, where sc = 0.545 is the value of the
middle point of the width of the chaotic band. Then,
from Eq. (13) with the given parameter values, we obtain

p ≈ k − sc
s∗ − sc

= 0.82. (14)

Consequently, for r = 3.5 and ε = 0.38 the GCM system
of Eqs. (1) can exhibit an asymmetric chimera state con-
sisting of the coexistence of a subset staying on a fixed
point and a subset of desynchronized chaotic maps hav-
ing approximate relative sizes 0.82 and 0.18, respectively.

Note that the predictions for periodic clusters, asym-
metric clusters and asymmetric chimera states are made
solely from the knowledge of the dynamical responses
of the single driven map and without direct numerical
simulation on the GCM system of Eqs. (1). However,
equations (10), (11), and (13) do not indicate what ini-
tial conditions in the GCM system will conduce to those
particular states.

Figures 3(a-c) show the spatiotemporal patterns of the
variables xit in the autonomous GCM system Eqs. (1) for
different values of the local and the coupling parameter.
Figure 3(a) shows an asymmetric chimera state for r =
3.5 and ε = 0.38, consisting of a subset synchronized on
the fixed point X∗ = 0.95 (with small fluctuations) and a
desynchronized subset whose respective relative sizes are
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0.8 and 0.2, close to the predicted approximate values.
The corresponding mean field reaches an almost constant
value ht = 0.88 (there are small fluctuations). We have
verified that similar asymmetric chimera states emerge in
the GCM system with r = 3.5 for a range of values of the
coupling parameter ε corresponding to the region marked
Q in Fig. 2(d). Figure 3(b) confirms the existence of an
asymmetric three-cluster state for parameters r = 3.5
and ε = 0.48 with exactly the predicted characteristics,
relative sizes, and constant ht = 0.88. A two-cluster,
period-two state appears in Fig. 3(c) for the parameter
values r = 2 and ε = 0.29, as predicted.

FIG. 3: Asymptotic evolution of the states xit (horizontal axis)
as a function of time (vertical axis) for the GCM system of
equations (1) with size N = 1000, for different values of the
parameters r and ε. The values of the states xit are represented
by color coding. For visualization, the indexes i are assigned
at time t = 104 such that i < j if xit < xjt and kept fixed
afterward. Initial conditions xi0 are randomly and uniformly
distributed in the interval [0, 1]. After discarding 3 × 104

transients, 1000 iterates t are displayed. (a) r = 3.5 and
ε = 0.38, asymmetric chimera state; (b) r = 3.5 and ε =
0.48, asymmetric three-cluster state; (c) r = 2 and ε = 0.29,
two-cluster, period-two state; (d) States sit versus time for
the driven system of maps Eqs. (7) showing a two-cluster
asymmetric chimera state at parameter values r = 3.5, ε =
0.34 and k = 0.26; a state not occurring in the GCM system.

Condition Eq. (8) can also tell what states present
in phase diagram (ε, k) of the driven system of maps
Eq. (7) are not possible in the autonomous GCM system.
For example, consider the asymmetric chimera state for
the driven system shown in Fig. 3(d), consisting of two
equal-size, out-of-phase, period-two clusters and a desyn-
chronized chaotic subset. It arises for parameter values
r = 3.5, ε = 0.34, and k = 0.26 in the phase diagram
of Fig. 2(d). Such behavior can be sought in the GCM

system through condition Eq. (8), which for this state
takes the form

p

2
(s∗1 + s∗2) +

1

N

(1−p)N∑
j=1

sj = k, (15)

where s∗1 = 0.09 and s∗2 = 0.6 are the points on the
period-two orbit of each cluster, p/2 is the relative size of
each cluster, and 1−p is the relative size of the coexisting
desynchronized chaotic subset. The sum term in Eq. (15)
can be roughly approximated as (1−p)sc, where sc = 0.47
is the value of the middle point of the width of the chaotic
band. Then, from Eq. (15) we get p ≈ 1.68. Therefore,
this asymmetric chimera state cannot occur in the GCM
for the given parameter values.

When ht becomes constant, the local dynamics of the
GCM system can be effectively described by a single map
driven by a constant. The global field produces periodic
windows that were absent in the local maps, creating the
possibility of multiple out of phase orbits for the forma-
tion of periodic cluster states. Additionally, the bistabil-
ity induced by a constant field ht at the local level ex-
plains the emergence of asymmetric cluster and chimera
dynamics in the autonomous GCM system. To visualize
this process, Fig. 4 shows the return maps xit+1 versus

xit corresponding to two elements of the GCM system in
the asymmetric chimera state exhibited in Fig. 3(a) for
r = 3.5 and ε = 0.38: one element from the synchro-
nized subset and another element from the desynchro-
nized subset. The driven map Eq. (6) with parameters
r = 3.5, ε = 0.38, and k = 0.88 is also plotted in Fig. 4.
Both return maps overlap the driven map. The fixed
point attractor of the synchronized subset corresponds
to X∗ = s∗ = 0.95, which is the rightmost fixed point so-
lution of the driven map, given by (1− ε)f(s∗)+ εk = s∗.
Similarly, the chaotic trajectory of the map from the
desynchronized reproduces the dynamics of the chaotic
band attractor coexisting with s∗ in the driven map.

FIG. 4: Driven map Eq. (6) for parameters r = 3.5, ε = 0.38,
and k = 0.88 (brown line), and return maps of one element
from the synchronized subset (blue dots) and one element
from the desynchronized subset (red dots) in the asymmet-
ric chimera state of the GCM system Eqs. (1)-(2) shown in
Fig. 3(a). The diagonal is also shown.
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V. CONCLUSIONS

We have investigated the emergence of asymmetric
cluster and chimera states in globally coupled systems,
where the trajectories of oscillators belonging to different
clusters or subsets exhibit different dynamical properties.

Based on the analogy between the local dynamics of an
autonomous GCM system and a single driven map in its
simplest form, when the drive is constant, we have eluci-
dated the mechanisms for the occurrence of cluster and
chimera states in systems with global interactions. The
presence of a unique periodic attractor in the dynamics
of the single map driven by a constant can give rise to
a periodic cluster state. On the other hand, asymmetric
states arise when the dynamics of the driven map shows
bistable behavior; asymmetric cluster states are associ-
ated to the coexistence of two attractors with different
periods, while asymmetric chimera states require the co-
existence of a fixed point attractor and a chaotic attrac-
tor. These states can occur in a GCM system evolving
such that its global field remains constant.

By obtaining the dynamical responses of the local map
subject to a constant drive, we have established a con-
dition in Eq. (8) that links the behaviors of the driven
map and a GCM system displaying a constant mean field.
This condition can be applied to predict parameter val-
ues and partition sizes for the occurrence of asymmetric

cluster and chimera states in the GCM system, or to find
out states allowed by the driven map dynamics that are
not possible in the GCM system. Condition (8) can be
employed for other functional forms of the global cou-
pling ht, besides the mean field.

The local map f in Eq. (3) possesses a homogeneous,
single chaotic band attractor. Thus, the occurrence of
cluster and chimera states cannot be attributed to the
presence of periodic windows nor to preexisting multista-
bility in f ; both properties are induced by the global in-
teraction field, either an external drive or an autonomous
coupling function. The emergence of an asymmetric
chimera state associated to the bistability produced by
the coupling function may be seen as a mechanism for
self-control of chaos in subpopulations of dynamical ele-
ments in an autonomous spatiotemporal system.

Multistability induced by the coupling can also appear
in continuous time coupled oscillators [40]. Our results
indicate that asymmetric cluster and chimera states may
be induced by an external constant uniform field act-
ing on an ensemble of chaotic oscillators. By varying
the coupling strength or the intensity of the force, these
asymmetric states could be selected; the formation of
asymmetric chimeras could be employed as a method for
partial or localized control of spatiotemporal chaos. Such
settings can be experimentally realized and could have
applications in diverse systems.
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