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A mesoscopic multiparticle collision model for fluid dynamics is generalized to incorporate the chemical
reactions among species that may diffuse at different rates. This generalization provides a means to simulate
reaction-diffusion dynamics of complex reactive systems. The method is illustrated by a study of cubic
autocatalytic fronts. The mesoscopic scheme is able to reproduce the results of reaction-diffusion descriptions
under conditions where the mean field equations are valid. The model is also able to incorporate the effects
of molecular fluctuations on the reactive dynamics.

1. Introduction

Mesoscopic models provide coarse-grained descriptions of
the dynamics of systems that neglect certain details at micro-
scopic scales while retaining essential dynamical features at
mesoscopic and macroscopic scales. Consequently, a convenient
way to study of the dynamics of complex systems over a large
range of interesting space and time scales is through the use of
such models. In physical and biological systems we often
encounter situations where mean field descriptions of reactions
break down and molecular fluctuations play an important role
in determining the character of the system’s dynamics. Such
effects are especially relevant for reactions taking place in
nanoscale domains or biochemical reactions at the cellular level.
Fluctuations also play a role in far-from-equilibrium systems
near bifurcation points or when the system behaves chaotically
since the system is especially susceptible to perturbations in
such regimes.1 Mesoscopic models are able to capture the
influence of such molecular fluctuations on the dynamics.
Mesoscopic models are also useful for simulating the dynamics
of macroscopic systems because they often provide stable
particle-based simulation schemes and can be implemented in
complex geometries.

In this article we consider a generalization of a mesoscopic
multiparticle collision (MPC) (or stochastic rotation) model2-4

to a pattern-forming chemically reacting system. We show how
the multiparticle collision rule can be generalized to a multi-
component system to yield different diffusion coefficients for
the chemical species. Differences in diffusion coefficients can
give rise to chemical instabilities which cannot occur if the
diffusion coefficients of all species are equal. Reactions are
incorporated, also at a mesoscopic level, by combining a birth-
death description of reactive events with multiparticle collisions.
The mesoscopic dynamics preserves all the basic conservation
laws of the system and leads to the macroscopic evolution laws
on long distance and time scales.

To illustrate the scheme, the reactive MPC dynamics is used
to investigate the evolution and structure of a cubic autocatalytic

front. The cubic autoatalytic reaction is A+ 2B f 3B, where
the autocatalyst B consumes the fuel A. If one considers a two-
dimensional rectangular domain (or a thin rectangular slab in
three dimensions) with B in left portion and A in the right
portion, a reaction front will propagate from left to right. While
the simulations presented in this paper are for cubic autocatalytic
fronts, the manner in which the diffusion process is modeled to
yield different diffusion coefficients for different chemical
species and the way reactions are incorporated in the model
presage extensions of the theory and applications to more
complex far-from-equilibrium reactive systems.

The paper is organized as follows: In section 2 we sketch
the basic elements of the multiparticle collision model and
present its generalization to reactive systems where the chemical
species can have different diffusion coefficients. Section 3
describes the simulation of cubic autocatalytic fronts and
compares the results of the mesoscopic simulations with the
predictions of reaction-diffusion equations. The conclusions
of the paper are given in section 4.

2. Mesoscopic Model

In multiparticle collision dynamics, a system containingN
particles with continuous positionsr i and velocitiesWi evolves
through a sequence of free streaming and collision steps.3 The
collisions among the particles take place in the following way:
the system is divided into cells and at time intervalsτ each cell
labeled byê is assigned at random a rotation operatorω̂ê from
some suitable set of rotation operators. The center of mass
velocity Vê of the particles in cellê is computed, and the post-
collision velocity W′i of particle i in the cell is determined by
rotating its velocity, relative to the cell center of mass velocity,
and adding the center of mass velocity to the result of this
rotation

The velocity of every particle in cellê is rotated by the same
rotation operator, but the rotation operator varies from cell to
cell. The dynamics then consists of free streaming interspersed† Part of the special issue “Irwin Oppenheim Festschrift”.

W′i ) Vê + ω̂ê(Wi - Vê) (1)
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by these multiparticle collision events. It has been shown that
this dynamics conserves mass, momentum, and energy and thus
leads to the full set of Navier-Stokes equations on long distance
and time scales.3-5 The method has been applied to the study
of a variety of systems5 including hydrodynamic flows,6

colloids,7 polymers,8 Brownian motion,9 and simple diffusion-
influenced reaction dynamics.10

We present a generalization of this model that allows the
dynamics of reaction-diffusion systems to be investigated. This
generalization entails several extensions of the MPC model. In
particular, a multicomponent version of the MPC model10,11

must be constructed that accounts for reactions among the
chemical species and allows for the possibility that the diffusion
coefficients of the species differ.

Diffusion. A multicomponent MPC dynamics that provides
a simple way to control the diffusion coefficients of different
chemical species can be constructed as follows. Suppose we
haves species labeled by an indexR. Instead of applying the
MPC operator to all particles in a cell, we assume that
multiparticle collision operators act to change the velocities of
a fraction of the particles of speciesR in a cell for R ) 1, ...,
s. More specifically, in each cellê, each particle of speciesR
is chosen with probabilityγR. If Wi

R is the velocity of a chosen
particlei of speciesR andVê

c is the center of mass velocity of
all chosen particles, the post-collision velocities of those particles
that undergo collision are given by

The post-collision velocities of the particles that do not take
part in the multiparticle collision do not change. The diffusion
coefficientsDR are functions of{γR′|R′ ) 1, ...,s}, which can
be tuned to change the values of the diffusion coefficients.

To investigate the range over which the diffusion coefficients
can vary, we consider the self-diffusion coefficient of a single
species A and change both the mean particle densitynjA and
the fractionγA of particles that participate in the multiparticle
collisions. Figure 1 plotsDA(γA), determined from the slope of
the mean square displacement versus time, as a function density
njA for different values ofγA. From these results one sees that
the self-diffusion coefficient can be varied by about a factor of
5 by changing the values ofγA at a fixed density.

The self-diffusion coefficient forγA * 1 can be estimated in
the Boltzmann approximation where correlations are neglected.

The discrete-time Green-Kubo expression for the diffusion
coefficient is4,10

where, without loss of generality, we have setτ ) 1. Taking
into account the collision rule where, on average, a fractionγA

of the particles undergo multiparticle collisions and fraction 1
- γA do not, we have

whereV(1)
x is the post-collision value of the velocity at timeτ

) 1. Assuming that higher order collision terms can be
expressed in terms of the first collision so the series is geometric,
we obtain

where

was computed in ref 10. The comparison in Figure 1 shows
that this analytical expression (solid lines) accurately describes
the simulation data.

Reaction.The mesoscopic dynamics must also be generalized
to allow for chemical reactions among the species. Our earlier
study of diffusion-influenced reactions10 was restricted to a
simple A+ C h B + C reaction that occurs when the A or B
particles collide with catalytic spheres C. Since we are now
interested in reactions that occur among the mesoscopic
particles, we instead use a birth-death stochastic law to describe
the reactive events.1,12

Here we restrict our considerations to the cubic autocatalytic
reaction A+ 2B f 3B. Independently, in each cell we assume
the reaction takes place with probabilitypR ) knAnB(nB - 1),
wherenR is the number of molecules of speciesR in a cell.
The reactive dynamics in a cell is described by the Markov
chain,13

wheren ) (nA, nB), P(n, t) is the probability that there aren
particles in the cell at timet, and the transition matrixW is
given by

The (discrete time) rate of change of the mean density of species

Figure 1. Diffusion coefficientDA(γA) as a function of the densitynjA

for various values ofγA. Squares,γA ) 1.00. Circles,γA ) 0.75.
Triangles, γA ) 0.50. DiamondsγA ) 0.25. Solid lines plot the
theoretical value (eq 5) of the diffusion coefficient.
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R, njR(t) ) ∑nnRP(n, t), is

We assume that the MPC nonreactive collisions are sufficiently
effective to maintain a local equilibrium Poissonian distribution
in the cells so that

where the local Poisson distribution isPl(n; nj(t)) ) e-nj(t)nj(t)n/
n!. If we insert the local Poissonian approximation forP(n, t)
in the right-hand side of eq 9 forR ) A, we obtain the discrete-
time mean-field rate law

A similar equation can be derived for species B. Thus, the
mass action rate law will describe the dynamics provided
diffusion is sufficiently rapid compared to reaction so that a
local Poissonian distribution of particles is maintained during
the evolution of the reactive system. In this limit the discrete-
time rate law will closely approximate the continuous-time mass
action rate law.

After the reaction step, the particles free stream using the
post-collision values of the velocities, taking into account the
boundary conditions of the system. Once all the particles have
been moved, the time advances one unit and the multiparticle
collision and reaction steps are applied again. This mesoscopic
dynamics conserves the total mass, momentum, and energy of
the system.

3. Simulation of Chemical Fronts

In this section we show that the mesoscopic MPC model can
be used simulate the dynamics of cubic autocatalytic fronts on
macroscopic scales where comparisons with the predictions of
reaction-diffusion equations can be made. Cubic autocatalytic
fronts have been studied often in the context of a coupled pair
of reaction-diffusion equations for the A and B species.14-20

The particular focus of many of these studies was on the
transverse front instability that occurs when the diffusion
coefficient of the fuel is sufficiently larger than that of the
autocatalyst: at a critical value of the diffusion coefficient ratio
an instability will develop and the planar front will become
nonplanar and exhibit complex dynamics.

Our investigations will be confined to a simpler case of a
binary mixture undergoing the cubic autocatalytic reaction. For
such a reacting mixture the relevant macroscopic field variables
are the total mass densityF(r , t) ) FA + FB, the local
concentrationc(r , t) ) FA/F, the center of mass velocityW(r , t),
and the energy densitye(r , t). For the isothermal cubic
autocatalytic reaction with no net fluid flow so thatW(r , t) ) 0,
and taking equal masses for the A and B species, the
macroscopic equation for the number density of A is21

whereD is the mutual diffusion coefficient. The equation for
njB(r , t) is not independent and follows from number conserva-
tion, njA + njB ) nj0.

Front Profile. The simulations of the reaction front using
the MPC model were carried out in a rectangular prism with

lengthl ) 200 alongx, width w ) 200 alongy, and heighth )
5 units alongz. The system was open along its lengthx, periodic
boundary conditions were imposed in they-direction, and
bounce-back reflection boundary conditions were imposed on
the top and bottom of the prism alongz. To initiate a chemical
front, A particles were distributed uniformly in the right side
of the prism, (njA(x g 100) ) 10, njB(x g 100) ) 0), while B
particles were uniformly distributed in left side of the prism
(njA(x < 100) ) 0, njB(x < 100) ) 10). The velocities were
chosen from a Maxwell-Boltzmann distribution with reduced
temperaturekBT ) â-1 ) 1/3.

Starting from this initial condition, a reaction front will
develop as the autocatalystB consumes the fuel A in the
reaction. The front will move with velocityc, and it is
convenient to study the front dynamics in a frame moving with
velocity c. Propagating fronts are depicted in Figure 2, which
shows the concentration field at a given time instant. The upper
two panels plot the front for two values of the reaction rate
constantk andγA ) γB ) 1. We see that fork ) 0.0005 the
front profile is much thicker than that fork ) 0.001. This
dependence is in accord with predictions based on a reaction-
diffusion description of the front as can be seen from the analysis
given below.

The structure of these planar fronts can be investigated
quantitatively by studying the front dynamics in a frame moving
with the front velocity, ê ) x - ct and averaging the
concentration profile over the width (alongy) of the front,
njA(ê) ) ∫ dy nA(ê, y). Figure 3 plotsnjA(ê) for the two values
of k used in Figure 2. From this figure we see that a well-defined
propagating reaction front is obtained and the width of the front
decreases as the reaction rate increases relative to the diffusion
rate.

The front shape and velocity can be determined from the
reaction-diffusion equation. For a planar front propagating
along thex-direction, in a frame moving with the front velocity,

njR(t + 1) - njR(t) ) ∑
n,n′

nR(W(n|n′) - δn,n′)P(n, t) (9)

P(n, t) ≈ Pl(nA; njA(t))Pl(nB; njB(t)) (10)

njA(t + 1) - njA(t) ) - knjA(t)njB
2(t) (11)

∂

∂t
njA(r , t) ) - knjAnjB

2 + D∇2njA (12)

Figure 2. Concentration field at a given time instant fork ) 0.0005
(top left panel) andk ) 0.001 (top right panel). The system size is 200
× 200× 5. Lower panels show the concentration field fork ) 0.0005
and γA ) 0.25, γB ) 1 (left), andk ) 0.0005,γA ) 1, γB ) 0.25
(right). The structure of the reaction zone can be seen in these figures.
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the reaction-diffusion eq 12 is

The front profile can be found analytically from the solution of
this equation and is given by20

where the front speed isc ) (Dknj0
2/2)1/2. The profile for species

B can be found from the conservation conditionnjA + njB ) nj0.
Figure 3 compares this analytical prediction with the simulation
results of the MPC reaction-diffusion dynamics. ForγA ) γB

) 1 the mutual diffusion coefficientD is given by eq 5. There
is good agreement between the simulation and analytical values
for small k where the conditions for the validity of the mean
field approximation are satisfied. For largerk values, such ask
) 0.001 in the right panel of the figure we see that there are
deviations from the mean field result. For this value ofk, the
reaction is fast and there is a breakdown of the local Poissonian
equilibrium and a reaction-diffusion description is not ap-
plicable. A similar breakdown is observed for very smallk, for
example fork ) 0.0002, due to the fact that very few reactive
events occur in the reaction zone of the front and fluctuations
are important.

The front velocity was determined from the simulation data
as a function ofk. In Figure 4 we plot the front velocityc versus
k and compare the simulation results with the predictionc )
(Dknj0

2/2)1/2. The front velocity agrees with the simulation results
for k e 0.003, although the front profile deviates slightly from
the predicted value for somewhat smaller values ofk (k e
0.001).

More microscopic aspects of the front structure and dynamics
that are captured by the MPC model are illustrated in the lower
two panels of Figure 2. These figures plot snapshots of the front

for k ) 0.0005, the same value ofk as in the top left panel of
the figure, but for two different pairs ofγR values, (γA ) 0.25,
γB ) 1.0) and (γA ) 1.0,γB ) 0.25). Comparison of the lower
panels of the figures, and also with the upper left panel, shows
that the structures of the interfacial zones are different. In the
MPC dynamics employed here, the diffusion of the species
depends on their density andγR. Since the density of the species
changes significantly in the interfacial zone, it is likely that a
concentration-dependent mutual diffusion coefficient is required
to describe this structure.

4. Conclusion

The generalizations of the multiparticle collision model
described here, and its extensions, allow one to study a variety
of phenomena at the mesoscopic level. In particular, the ability
to simulate the dynamics of multicomponent systems, whose
diffusion coefficients can be different, means that diffusion-
driven instabilities, such as the transverse cubic autocatalytic
front instability considered in this paper, can be investigated.
Since the mesoscopic MPC model preserves the basic conserva-
tion laws in the system, to study such instabilities requires the
presence of a third solvent species so that there are two
independent diffusion coefficients in the system. The method
could also be used to study reactive and nonreactive binary fluid
flows, which also show interesting instabilities where fluctua-
tions play a role near the onset of instabilities.

The cubic autocatalytic reaction is simply one example of a
much broader class of reaction-diffusion systems that can be
studied using reactive versions of the mesoscopic multiparticle
collision dynamics. In particular, more general reaction-
diffusion dynamics in specific geometries relevant for the
materials science and biological applications may be carried out.
The presence of flows can also be treated easily in this context.

While we have focused primarily on parameter domains
where mean field approximations are largely applicable, one
of the most interesting applications of the methodology intro-
duced in this paper is to systems on mesoscales where particle
numbers are small so that fluctuations play a crucial role in the
dynamics and system geometry is important.
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