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Abstract

A model for the generation of fractal growth networks in Euclidean spaces of arbitrary dimension is presented. These networks
are considered as the spatial support of reaction—diffusion and pattern formation processes. The local dynamics at the nodes
of a fractal growth network is given by a nonlinear map, giving raise to a coupled map system. The coupling is described
by a matrix whose eigenvectors constitute a basis on which spatial patterns on fractal growth networks can be expressed
by linear combination. The spectrum of eigenvalues the coupling matrix exhibits a nonuniform distribution that is reflected
in the presence of gaps or niches in the boundaries of stability of the synchronized states on the space of parameters of
the system. These gaps allow for the selection of specific spatial patterns by appropriately varying the parameters of the
system.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern formation processes in regimes far from equilibrium often take place on media that are nonuniform
at some length scales. The nonuniformity may be due to the intrinsic heterogeneous nature of the substratum,
typical of pattern formation in biological contexts, or it may arise from random imperfections or fluctuations in
the medium. Such heterogeneities can have significant effects on the form of spatial patterns, for example, they
can induce reberverators in excitable media and defects can serve as nucleation sites for domain growth processes
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Recently, there has been much interest in the study of spatiotemporal dynamical processes on nonuniform or comple:
networks. In this context, coupled map latti¢gékhave provided fruitful and computationally efficient models for

the investigation of a variety of dynamical processes in spatially distributed systems. In particular, the discrete-
space character of coupled map systems makes them specially appropriate for the investigation of spatiotempors
dynamics on nonuniform networks that can represent models of heterogeneous media. Phenomena such as patte
formation, spatiotemporal intermittency, nontrivial collective behavior, synchronization, phase-ordering, etc., have
been extensively studied in coupled map systems defined on fractal [§&j8fsierarchical structurggl], trees

[5], random graphfg], small-world network$7], and scale-free network8].

An especially interesting class of nonuniform geometries comprises fractal growth nef@jark®se branching
structure, self-similar scaling features and lack of translation symmetry can give rise to several distinct characteristics
in both their dynamical and spatial properties. Fractal growth structures appear in nonequilibrium growth processes
which are common in many areas. Examples of such phenomena include diffusion-limited aggregation, dendritic
solidification, bacterial growth, viscous fingering, capillarity, electrodeposition, Laplacian growth problems, etc.
[10].

In this article we consider discrete reaction—diffusion processes and pattern formation taking place on fractal
growth networks. The spatiotemporal dynamics corresponds to a coupled map system defined on the geometrica
support of a fractal growth network. Although many growth structures found in nature have random features, here we
study the case of simple, deterministic fractal growth networks. We focus on the changes occurred in spatiotempora
patterns as a result of the fractal growth connectivity that describes the interactions in the systectidn 2
a model for the construction of fractal growth networks in any Euclidean space and a general notation for their
treatment are introduced. Bection 3 the coupled map models defined on fractal growth networks are presented.
The diffusion coupling among neighboring sites on a network is described by a matrix. The spectrum of eigenvalues
and eigenvectors of the coupling matrix is analyze®ettion 4 The eigenvectors constitute a complete basis
on which spatial patterns can be expressed by a linear combin&gation 5contains a study of the stability of
spatially uniform, periodic patterns on a fractal growth network for a local dynamics given by the logistic map.
Distinct features, emerging as a consequence of the fractal nature of the networks, allow for the selection of specific
spatial patterns as the parameters of the system are changed. Conclusions are preSentiedhi@

2. Model for fractal growth networks

Fractal growth networks can be generated in any Euclidean space of dimensyogeneralizing the fractal
growth model of VicseK9]. Starting from ad-dimensional hypercube, it is divided intd 8qual hypercubes. Of
these, only the central hypercube plus tHéngpercubes connected to its vertices are kept. This process is repeated
for each of the 2 + 1 resulting hypercubes. At a level of constructlorthe network consists a¥ = (24 + 1)¢
hypercubical cells or nodes whose coordinates can be specified by a sequence of symabols ¢; ), wherew;
can take any value in a collection of 2- 1 different digits forming an enumeration system in bage2), which
we denote byey, e, .. ., ex+1,4}. FOr example, forl = 2, we may chose; € {0, 1, 2, 3, 4.

To fix the labels, we start at levél = 1 where the labels of the?2- 1 cells in the network have the form
(«1). The label (0) is assigned to the central cell, and the otherseBs are labeled byog) # (0) in such a way
that the labelsd;) and ¢;) of the two cells located at the opposite ends of each diagonal passing through the
central cell satisfy mog 4 («; + «;) = 0, where the additior; + «; is defined modulo 2+ 1). Fig. 1(a) and
(b) show this notation for the fractal growth networks embedded in Euclidean spaces of diméasmnd 3,
respectively.

When the fractal network grows from level of constructico level (L + 1), each cell¢ia> - - - o1 ) is subdivided
into 2¢ + 1 cells, scaled down by a longitudinal factor of 3, and which are now labelaghby (- - a7 o7 1 1), where
the firstL symbols of the sequenceias - - - o, are the same as in the parent cell, and to distinguish the- (®
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Fig. 1. (a) Fractal growth network embedded in Euclidean space of dimedisiof at levels of constructiod = 1, 2 and 3, showing labels
on the cells. (b) Fractal growth network embedded in dimengien3 at level of constructio. = 2, showing labels on the cells.
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daughter cells, the last symhe} 1 is assigned similarly to the labels) at the construction levdl = 1. From
the construction process, it follows that the fractal dimension of the netwafk=isin(2? + 1)/ In 3.

The set of cells connected to the cell labeleddyb - - - ;) at a level of constructioh is defined as the neigh-
borhood (nearest neighbors) of this cell, and will be denotellfayas - - - a1 ). Three types of cells can be identified
in a fractal growth network embedded id-alimensional Euclidean space: (i) centers, that are connectédtbér
cells; (ii) joints, that are connected to two cells; (iii) edges, connected to just one cell. A sequewge oy )

can be written asaf - - - ap—sa; _,4) for somes € {1,2,..., L — 1}, and wherex; means the sequence sf
symbolse;. A center cell is labeled by a sequeneogd> - - -aL_Sa‘L__lerlO). Its neighborhood set consists of 2
cells, labeled by the sequencesds - -- o) 11), (102 o) % 12), ..., and @aaz- - oo L, 129),

respectively. A joint cell labeled by - - - oy —sa; _ 1), With @y 511 # 0, has a neighborhood set with two ele-
ments. One is the center cell labeled by (- -aL_Saii%Y+1O). The other neighbor is another joint cell labeled by
(1 op_—s_10p—s118%), ifap_s =0; 0rby @1 ---ap_s—108%), if az_s # O; whereg is an allowed symbol that
satisfies mogl_ (7 —s+1 + B) = 0. This procedure identifies any two joint cells as reciprocal neighbors. On the
other hand, an edge cell labeled by the sequence « ;o) _ ;) can not be assigned a reciprocal neighbor from

the above procedure; thus this edge possesses only one neighbor, the center cell labaled by (;o L . ,0).

L—s+1
Because the symbols belong to an enumeration system in basé+21), a cell in the network labeled by the
sequencedias - - - a7 ) can be univocally associated to an integer index0, 1, 2, .. ., (2¢ + 1)* — 1, by the rule
L .
(a0 o) o i=Y a2 + 1) (1)
j=1

As an illustration, consider the fractal growth network embedded in an Euclidean space of dinakasiras in
Fig. 1(a). At the level of construction = 3, the cell labeled by (233} (23?) is a joint cell and has index= 68,
according to the rul&qg. (1). Its two neighbors, labeled by (230) (a center cell) and (822022) (another joint
cell), are assigned indexes= 65 and 12, respectively. Similarly, the cell (422)(422) is an edge with associated
indexi = 112; its only neighbor is the center cell (420), corresponding=al10.

3. Coupled map lattice model for pattern formation

A network might be considered as the spatial support of a dynamical spatiotemporal processes with either
discrete or continuous-time. Here we consider reaction—diffusion and pattern formation phenomena on fractal
growth networks. By associating a nonlinear function to each cell of a given fractal network and coupling these
functions through nearest-neighbor diffusion interaction, we define a coupled map lattice that describes a reaction-
diffusion dynamics as follows:

xal) = F@) +v > @) = x(@), @)
jeN)

where x;(i) represents the state of the cell having indeassigned byeq. (1), at discrete timd; f(x,(i)) is

a nonlinear function specifying the local dynamidgi) is the neighborhood set of the cell with indexy is a
parameter expressing the coupling strength among neighboring cells and it plays the role of a homogeneous diffusior
constant. The value of must be in an interval such that the local variablgs) in Eq. (2 are in the definition range

for the local mapf (x;(i)). The form of the coupling term i&q. (2 is usually called backward diffusive coupling

and corresponds to a discrete version of the Laplacian in reaction—diffusion equations. This coupled map model car
be generalized to include other coupling schemes, nonuniform coupling, or continuous-time local dynamics.
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Eq. (2 can be written in a vector form as
Xer1 = f(X0) + yMX;. ®3)

The state vectox, has N components X;]; = x,(i), i =0,..., N — 1, corresponding to the states(i) =
xi(1a2 - - - ap) of the cells on the network. Th¥ x N real, symmetric matrid expresses the coupling among
theN components;(i). For a fractal growth network embedded in an Euclidean space of dimemsiothe level
of constructiorL, the components of the corresponding mafixdenoted by (i, j) (i, j =0,1,..., N — 1), are

1 if j € M),
M@, j) = M(j,i) = § —ING)I ifi= (4)
0 elsewherge

where|A(i)| is the cardinality of the neighborhood $€ti) = Ma1az - - - ar). The matrixM plays the role of the
spatially discrete diffusion operator on these networks, similar to the Laplacian in a spatially continuous reaction—
diffusion equation.

4. Spectrum of the coupling matrix

The spatial patterns that can take place on fractal growth networks are determined by the eigenmodes of the
coupling matrixM, similarly to reaction—diffusion processes on regular Euclidean latfick42]. On the other
hand, the stability of the synchronized states is related to the set of eigenvaMes of

In order to analyze the eigenvector problem, consider a fractal growth network embedded in an Euclidean space
of dimensiord, at level of constructioh, on which a spatiotemporal dynamics has been defined in the vector form
of Eq.(3) The complete set of orthonormal eigenvectors of the corresponding rvatcan be described as the
superposition of two distinct subsets of eigenmodes. One subset, which will be dendtgg, hycontains those
eigenvectors associated to nondegenerate eigenvalues; and the other subset comprises the eigenvectors correspondi
to degenerate eigenvaluesMf and will be represented Hys,,} (the indices refer to the degeneracy, as explained
bellow). Thus, the complete set of eigenvectord/ofs {u,,} U {vis}. Each eigenvector describes a basic spatial
pattern that may arise on a fractal growth network characterized by an embedding dinttasidora level of
constructiorL. As illustration, we shall show the eigenvalues and eigenvectors of the coupling matrix corresponding
to the fractal growth network embedded in the plane.

4.1. Nondegenerate eigenvectors

The eigenvectors d¥l belonging to the nondegenerate sulisg},} satisfy
MU i = ByunUpnns fm=0n=0ifm=212..Ln=12..3""1 (5)

where b,,, is a eigenvalue associated to the eigenvectgy. The i component of vectou,,, IS [Un,]; =
Upn (012 - - - ), according to the rule ifcg. (). The number of eigenvectors in this subset and that of their
corresponding eigenvalues, denoted/(y), is

3L 41

L
vb)=14) 3" t= >

m=1

(6)

Any eigenvectou,,, in the nondegenerate subsey,,, } is characterized by the following property: its components
corresponding to cells of the same type on the network and located at the same distance (measured in number of
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cells) from the center cell (Q are identical. Because of this property, we also refer to the elements in the subset
{u,,,} assymmetrieigenvectors.

The indexm corresponds to the level of construction at which the eigenvalydirst appears, and it is related
to the length of the longest diagonals that arise as the fractal growths up to the.lé&ted level of construction
L > 1 there is a total of 2+ 1)~ + 1 diagonals on the network, which can be classifietl distinct families
or groups according to their lengths, measured in terms of number of cells on the diagonal. Each different family
of diagonals can be identified by the index=1, 2, ..., L, and each family contains all the diagonals of the
network that have'3 cells, and thus can support a wavelength’6f Bhe indexn gives the step in the construction
process at which the family of diagonals of lengthl3as first appeared. For a network defined at leyéhere are
(27 x (2¢ + 1)L—~1) diagonals in each family characterized imy= 1,2, ..., L — 1, and two diagonals in the
family corresponding te = L. For example, ifrig. 1(c) withd = 2 andL = 3, there are three families of diagonals
according to their lengths: the family = 1 contains 20 short diagonals with a length of three cells; the family
m = 2 has four medium diagonals measuring nine cells; and the family3 possesses two long diagonals with 27
cells. Additionally, we must count the family = 0 associated to diagonals having one element; this corresponds
to the spatially homogeneous eigenvector. Thus, the index0, 1, ..., L, indicates the level of construction at
which the family of diagonals characterized by the indeand having the same length of ells has appeared.
The family of diagonals identified by remains in the fractal as the network grows up to lével

The indexn counts the number of distinct symmetric eigenvectors that have originated each time a new family
of diagonals of length’3 cells appear, and it depends on the number of intersections that a new diagonal of length
3™ has with the other diagonals already present in the network. There is one intersection for each three cells in a
diagonal; thus the number of intersections s 3. These intersections determine the different wavelengths that
can be formed on a diagonal of length.3The number of these different wavelengths having reflection symmetry
about the long diagonal of lengti Driginated at step can be counted by = 1,2, ..., 3" 1,

The spatially homogeneous eigenvector of the mattjpwhich we denote bygg, belongs to the subsét,,,, }
and its componentd are

Ugo(ers - - -arr) = N~Y2; VL, Yoy (7)

and

Ugo = Jlﬁcol(], 1,...,1). (8)

Since the eigenvectors M are mutually orthogonal, all others eigenmodes in either sybggt or {5, } must
satisfy

> Umnler---ar)=0; Vg, m#0; > VE (1) =0; Vo, )

that is, the sum over the components of any eigenvectbt,dfifferent ofugg, is zero.

Fig. 2(a) shows the(b) = 5 nondegenerate eigenvectors and their associated eigenvalues of the coupling matrix
corresponding to a fractal growth network embedded in dimensier? and having a level of constructidn= 2.
Fig. 2(b) shows the subset of degenerate eigenveathysind the eigenvalues corresponding to a fractal growth
network embedded in an Euclidean space of dimengien?, at level of constructioh. = 2.

The set of eigenvalues arising frdag. (5 may be ordered by decreasing value. By Gershgorin’s thefit8m
the homogeneous eigenvector possesses the largest eigenvilyevbich isbgg = 0. In the case of embedding
dimensiond = 2, the smallest eigenvalue for largés found to be

Jim by gi=—(4+ V2). (10)
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Fig. 2. Fractal growth network corresponding to embedding dimensier2 and level of constructiod = 2. (a) The five nondegenerated,
symmetric eigenvectons,,,, and their corresponding eigenvalues. (b) Degenerate eigenvegtoesd their corresponding eigenvalues.

For each index: > 1, the eigenvalue®y,1, by, ..., b,,3:-1} arise in groups of threé,,,,, b, andb,,,», where
n=2x3""1_n41; n=2x3"1iqn (11)
The sum of the eigenvalues in each of these groups is constant, and gives
Bin + bt + by = — (27 + 4). (12)
Because of (12), the eigenvalues associated to the nondegenerate eigenvectors satisfy

L 3ml

SN b =—-+ 4)2 3= 271 4 2)3 - 1) (13)

m=0 n=0

Fig. 3 shows the spectrum of eigenvalugs,,}, indicated by empty symbols, for a fractal growth network
embedded in an Euclidean space of dimengiea 2, at successive construction levelsEigenvalues associated
to degenerate eigenvectors of the coupling matixo be discussed next, are also showFim 3.

4.2. Degenerated eigenvectors

The subset of degenerate eigenvectufs,} of the matrixM satisfy

MVE =a,,vé8 ., m=212...L; n=12..,3"1 (14)

wherea,,, is the eigenvalue associated to a grougdtlegenerate eigenvectops., ,v2 . ...,V } belonging
to the subsefvs,,}. The indexg runs from 1 to a valug2 and counts the different eigenvectors associated to the
degenerate eigenvalug,,, as it will be shown bellow. The integer indicesandn label different eigenvalues,,), .
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Fig. 3. Spectrum of eigenvalues of the coupling matrix at increasing constructionllevets fractal growth network embedded in dimension
d = 2. (a) Eigenvalues,,, are indicated by empty symbolsio (0); b11 (©); bas (2); b3, (V); bay, (¢). Other symbols indicate eigenvalugg,
as follows:ay, (W); az, (e); az, (A); as, (x); as, (+). (b) Magnification of the dotted region in (a).

Thei-component of a vector,,,, corresponds to a cell of the network labeled by the Bde(1), i.e., V] =
V(a1 - - - ). The eigenmodes in the subgef,,,} are characterized by the following two properties:
ve (o1 op—n0™) =0; m=12,...,L—1, (15)

that is, all the components of,,, corresponding to center cells formed in the fitst- m levels of construction
vanish

Z V8 (arap -+ -ap—10) = 0; (16)

that is, the sum of the components associated to the center cells in a network spatially described by,yéstor
zero.

In contrast to the eigenvectors in the nondegenerate subset, an eigemjgd®nonsymmetric; however it
exhibits a partial regularity, having all its components corresponding to center cells equal to zero if they originated
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at the level of constructiol. — m. The indexm counts the number of additional levels of construction in which
nonvanishing center cells have appear up to leyeind its possible values ane= 1, 2, ..., L. There are (2 +

1)L vanishing center cells in an eigenvecidy. Each null center cell in the eigenvector is the centefof2- 1
diagonals, except the cell{Dthat is the center of one additional diagonal. Thus, adding the additional diagonal of

the center cell (D), there are (24 1)L—(2¢~1 — 1) + 1 diagonals whose centers are null center cells. The index

n counts the numPer of possible intersections that these diagonals have with other diagonals; its possible values are
n=1212...,3"""

Because an eigenvectat,; is a nonsymmetric mode, the two edge cells at the ends of each of the
(27 4+ 1)t—m(2¢-1 — 1) 4 1 diagonals having null center cells are independent of each other. Therefore, there
exist 2[(Z + 1)L~ (2?1 — 1) + 1] edge cells with this characteristics, for given valuemaindn. However, due
to the orthogonality propertygq. (9, the total number of linearly independent eigenvectgys possessing the
same indicesn andn is £ = 2[(2¢ + 1)L~ (2?1 — 1) + 1] — 1. The indexg counts the number of independent
eigenvectors associated to an eigenvalpg and it may take the valugs= 1, 2, .. ., £2. In this fashion, the subset
of degenerate eigenvectdsg;} of the coupling matrisM corresponding to a fractal growth network embedded in
dimensiond and at level of constructiohis fully described.

In the case of embedding dimensidr= 2, there are 5 vanishing center cells in an eigenvecidy; and there
are 3~ 4 1 diagonals whose centers are null center cells. The number of linearly independent eigemjgctors
having the same indicesandnis £2 = 2(5 " + 1) — 1 = 2 x 517 4+ 1. Thus, the indey may take the values
g=2...,2x57m 41

The number of different eigenvalues,,, that belong to the spectrum of matik for a fractal growth network
at construction level, is

L

va)=) 3" = 3 -1 (17)

= =
m=1

At each leveln > 1, there appear’3 ! new eigenvalues,,,,. Similarly to the nondegenerate eigenvalues de

can be grouped in sets of three eigenvalues that satisfy

Amn + Ay + Ay = _(Zd + 4)s (18)
where
n=2x3"1_n41, n =2x3"1yn, (19)

and therefore the total sum of the degenerate eigenvalpe®f a matrixM corresponding to a fractal growth
network embedded in a dimensidrand at level of constructioh gives

L 31 L
SN am=—-'+4)) 3t =—2+2)@ -1 (20)
m=1n=1 m=1

Fig. 3 shows the spectrum of eigenvalues,,} U {b,,,} for a fractal growth network embedded in Euclidean
space of dimensiod = 2 at successive levels of constructionThe distribution of the spectrum of eigenvalues of
the coupling matrixM can be seen as a function of the growth process of the fractal structure. Note that the full
spectrum{a,,,} U {b,,,,} is always contained between the eigenvaliugs= 0 andb; 3.-1.

FromEgs. (6) and (1) the total number of distinct eigenvaluesiMf including both types,,, andb,,,, and
denoted by (M) is given by

V(M) = v(b) + v(a) = (3% + 1)+ (3" — 1) = 3. (21)

Since there appeat’3! new eigenvalues of type,,,, at each level of constructiom, and there are2 = 2[(2¢ +
1)L—m(24-1 — 1) 4 1] — 1 eigenvectorss,, associated to each eigenvalyg,, the total number of independent
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eigenvectors in the subsgty,} is

3L 41

5 (22)

L
Z 9(3m71) — (2d + 1)L _

m=1

FromEq. (6 we know that the number of independent eigenvectors in the siihggtis (3“ + 1)/2. Therefore,
the total number of independent eigenvectorsofs

IEE+ )+ +)F - 3B+ 1) = (2 + 1) =N, (23)

as should be expected.

Fig. 4(a) shows the complete spectrum of eigenvalueMadnd the degeneracy fraction of each eigenvalue,

for a fractal growth network embedded in an Euclidean space of dimedsiof, at level of constructiod = 5.

The degenerac = 2 x 5°~ + 1 of each of the(a) = (3% — 1)/2 = 121 eigenvalues,,, is plotted as a vertical

bar, while thev(b) = (3° + 1)/2 = 122 different eigenvalues,, are indicated by plus symbols (+) and they are
nondegenerate. Itis clear that both the distribution of eigenvalues and their degeneracies are nonuniform. The scalin
properties of the spectrum of eigenvalues of the coupling matrix can also be conveniently represented by plotting
the accumulated sum of the degeneracies of all eigenvalues, that is, the measure of the spéét(denofed by

0), on the eigenvalue axis for large as inFig. 4b). The resulting graph exhibits the features of a devil staircase,

a fractal curve arising in a variety of nonlinear phenomena.

The eigenvectors of the coupling matrix reflect the topology of the fractal growth network and they are analogous
to the Fourier eigenmodes appearing in regular Euclidean lattices. In this sense, the symmetry properties of the
nondegenerate eigenvectdts,,} and the conditions given ikgs. (15) and (16for the degenerate eigenvectors
{vis) represent different wavelengths on a fractal growth network embedded in an Euclidean space of dishension
at level of constructioth.

5. Synchronized states and pattern selection

Synchronized states in spatiotemporal systems are relevant since we are often interested in mechanisms by whic
a spatial pattern can be selected in a uniform system that breaks its symmetry as a parameter is changed.
Consider spatially synchronized, perisdstates such as;(«1---ar) = xg, V(e1---o;); wherexg, (k=
1,2,...,K), is a periodK orbit of the local map, satisfying(¥)(x;) = x;. The linear stability analysis of pe-
riodic, synchronized states in coupled map lattices is carried out by the diagonalization of theNinetiieq. (3,
and it leads to the conditiorj1]

K
117G+ vl <1, (24)

k=1

wherey is any of thev(M) = 3L eigenvalues, associated to either subset of eigenveigrg or {v,}, of the
coupling matrixM corresponding to a fractal growth network embedded didimensional Euclidean space at
level of constructiorn..

The nonuniform distribution of the eigenvalue spectrum is manifested in the stability of the synchronized states
throughEg. (29 and gives rise to marked differences when compared, for instance, with the bifurcation structure
on regular lattices. As an application, consider a local dynamics described by the logisti¢(jag, Ax(1 — x).

In this case, the stability conditiongg. (24, for the periodk = 27, synchronized state yield the set of boundary
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Fig. 4. (a) Distribution and degeneracies of the spectrum of eigenvalues of the couplingvhdtrida fractal growth network embedded in
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degeneracy of the eigenvalugs,, } divided byN, indicated by a vertical bar at each eigenvalue. (b) The measure of the full set of eigenvalues
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curves

2P

Sp(w) = [ T[22 — 2%) + yu] = £1. (25)
k=1

For each sigrEq. (29 give 3" boundary curves in the plang ¢.), corresponding to the different valuesiafthese
curves determine the stability regions of the peridd</nchronized states on the network.

The scaling structure for the period;Xynchronized states in fractal growth networks is similar to that of a any
lattice described by a diffusive coupling matrix, since the fornkqf (29 is the same in any case. As for regular
Euclidean lattice$11,12] the stability regions for the period?22synchronized states in the, ) plane scale as
A~ 387P andy ~ P, wheres = 4.669. .. ande = —2.502. .. are Feigenbaum’s scaling constants for the period
doubling transition to chaos. However, the specific structure of the eigenvalue spectrum of the coupling matrix
determines the shapes and gaps of the regions of stability of synchronized, periodic states.
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FromEg. (29, the boundary curves for the synchronized, fixed point sgate Q) on the parameter plang, ¢.)

are given by the straight lines

A=py+1, A=puy+3,

(26)

which are first crossed for the most negative eigenvalue, b; ;.-1. Similarly, the boundaries period-twe &
1), synchronized state on a fractal growth network embedded in an Euclidean space of dirdeastoand at
construction leveL. = 3 are given by the two sets

S%(amn) = —»2 + 20 + 4+ yaun(vamn —

2)=+

17

(27)

K
| | il

3.245

3.235

3.23

(b)

v

o S5(bin) = =1
N

S:% (aze) = —1
\5:1 (b3g) = +1
1 ] 1
-04 -0.3 -0.2
Y

Fig. 5. The boundary curvexg1L = +1 given byEgs. (27) and (28for the period-two, synchronized states of a fractal growth network at level
of constructionL = 3, embedded i@ = 2. (a) The upper curves correspond to the r.h.€qd. (27) and (2Bequal to—1 for both types of
eigenvalues. Arrows indicate the boundary cuﬁ\g(%sg) = +1. The interior region bounded by these curves is where stable, synchronized,
period-two states exist in the parameter plang/). (b) Magnification of the upper curves in (a), showing the gaps in the stability boundaries
of the period-two, synchronized states. Arrows indicate boundary curves corresponding to several eigenvalues. The )susitdmyond the
boundaryS%(h35) = —1 indicates the values of the paramete@nd used inFig. 6.
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and
S2(bmn) = =A% + 20 + 4+ Vb (Ybyun — 2) = £1. (28)

Fig. 5a) shows the boundary curvEss. (27) and (28on the planey, A). The boundary between the synchro-
nized, fixed point state and the synchronized period-two state occues & The upper boundaries (corresponding
to —1 in the r.h.s. oEEgs. (27) and (28 have minimaimin = 1 + +/5 at valueSymin = 1/bun andymin = 1/dmn
(for any period-2, Amin depends op). Fig. 5b) shows a magnification ¢fig. 5a) around the minima of the upper
boundaries. The distribution of the minimgi, and the presence of nonuniformly distributed gaps in the boundary
curves is a manifestation of the nonuniform structure of the eigenvalue spectrum. Since the nonuniformity in the
distribution of eigenvalues persists at any construction leala fractal growth network, this property allows for
regions of stability of the synchronized states or gaps characteristic of fractal networks and which are not present
in other geometries, for example in regular lattices, where the distribution of eigenvalues of the coupling matrix is
uniform and continuous in the limit of infinite size lattices.

The set of eigenvectofs,,,} U {vy,} of the coupling matrixvl constitute a complete basis (normal modes) on
which a state, of the system can be represented as a linear combination of these vectors. Thus the evolution of
reflects the stabilities of the normal modEegy. 5(b) shows how a spatially inhomogeneous pattern may be selected
as the synchronized state becomes unstable through crossing of the upper boundary; the first boundary segmen
crossed determines the character of the instability and the properties of the selected pattern. For example, consider
an initial state consisting of a small perturbation of the synchronized, period-2 state at parameter values just beyond
the boundary segment corresponding to the eigenvaljéndicated by a cross iRig. 5b), where this initial state
is unstable. The inhomogeneous period-four final spatial pattern is represefigdénit corresponds to a linear
combination of the three eigenmod{e/ée;; g =1, 2, 3} associated to the degenerate eigenvalgeof the matrix
M corresponding to the fractal network embedded in dimengien2 at level of constructior. = 3. All other
modes are unstable in this region of parameter space. For any construction éétbe fractal network, and any

period-2Z, the boundary curvé‘31(a36) = —1 separates a gap of the synchronized state from the stable region for
"u " "
i ]
O
:.I I.l | .:
O | C H
" n
HE H
N
&
H B

:.jJ | .: l.l

| H H N H
Fig. 6. Inhomogeneous, period-four state at parameter valaes-0.296,1 = 3.24. This patternis alinear combination of the three eigenvectors
associated to the eigenvaligs.
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the eigenmodess,, corresponding tases. Therefore, a transition between these two spatial patterns can always be
observed in the appropriate regions of the parameter plang. (

6. Conclusions

The underlying inhomogeneous structure of fractal growth networks has significant effects on the spatial patterns
that can be formed by reaction—diffusion processes on these geometrical supports. In systems of interacting element
such as the models considered in this article, the coupling matrix contains the connectivity of the network. The set
of eigenvectors of the coupling matrix reflect this connectivity. The spatial patterns that can arise in fractal growth
networks are determined by the eigenvectors of the diffusion coupling nhtnixhich constitute a complete basis
on which any spatial mode can be expressed as a linear combination. These eigenvectors have complex spatial form
but they are analogous to the Fourier eigenmodes arising in regular Euclidean lattices. On the other hand, the stability
of the synchronized states is determined by the eigenvaluds ©he density distribution of these eigenvalues and
their degeneracy are nonuniform. These features affect the bifurcation properties of dynamical systems such a
coupled maps defined on fractal growth networks. The scaling structure of the synchronized, period-doubled states
on the space of parameters of the system is similar for both uniform and fractal networks but the nature of the
bifurcation boundaries is different. For fractal growth networks, the nonuniform distribution of eigenvalues leads to
gaps in the boundary curves separating stable synchronized states that are not present for coupled maps on unifor
lattices, where the spectrum of eigenvalues is continuous. These gaps allow for the selection of specific spatial
patterns arising from a uniform, synchronized state by appropriately changing the parameters of the system.

Although we have presented only the simplest spatiotemporal patterns that can be formed on fractal growth
structures, the formalism introduced in this article can be applied to many other processes, such as excitable
dynamics, nontrivial collective behavior, phase-ordering, domain segregation, turbulence, etc. The formalism is
also useful for cellular automata models and continuous-time local dynamics on fractal growth networks.

The study of dynamical systems defined on nonuniform spatial supports, such as fractal growth networks, provides
insight into the relationship between topology and spatiotemporal phenomena in complex networks.
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