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Abstract

A model for the generation of fractal growth networks in Euclidean spaces of arbitrary dimension is presented. These networks
are considered as the spatial support of reaction–diffusion and pattern formation processes. The local dynamics at the nodes
of a fractal growth network is given by a nonlinear map, giving raise to a coupled map system. The coupling is described
by a matrix whose eigenvectors constitute a basis on which spatial patterns on fractal growth networks can be expressed
by linear combination. The spectrum of eigenvalues the coupling matrix exhibits a nonuniform distribution that is reflected
in the presence of gaps or niches in the boundaries of stability of the synchronized states on the space of parameters of
the system. These gaps allow for the selection of specific spatial patterns by appropriately varying the parameters of the
system.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern formation processes in regimes far from equilibrium often take place on media that are nonuniform
at some length scales. The nonuniformity may be due to the intrinsic heterogeneous nature of the substratum,
typical of pattern formation in biological contexts, or it may arise from random imperfections or fluctuations in
the medium. Such heterogeneities can have significant effects on the form of spatial patterns, for example, they
can induce reberverators in excitable media and defects can serve as nucleation sites for domain growth processes.
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Recently, there has been much interest in the study of spatiotemporal dynamical processes on nonuniform or complex
networks. In this context, coupled map lattices[1] have provided fruitful and computationally efficient models for
the investigation of a variety of dynamical processes in spatially distributed systems. In particular, the discrete-
space character of coupled map systems makes them specially appropriate for the investigation of spatiotemporal
dynamics on nonuniform networks that can represent models of heterogeneous media. Phenomena such as pattern
formation, spatiotemporal intermittency, nontrivial collective behavior, synchronization, phase-ordering, etc., have
been extensively studied in coupled map systems defined on fractal lattices[2,3], hierarchical structures[4], trees
[5], random graphs[6], small-world networks[7], and scale-free networks[8].

An especially interesting class of nonuniform geometries comprises fractal growth networks[9] whose branching
structure, self-similar scaling features and lack of translation symmetry can give rise to several distinct characteristics
in both their dynamical and spatial properties. Fractal growth structures appear in nonequilibrium growth processes
which are common in many areas. Examples of such phenomena include diffusion-limited aggregation, dendritic
solidification, bacterial growth, viscous fingering, capillarity, electrodeposition, Laplacian growth problems, etc.
[10].

In this article we consider discrete reaction–diffusion processes and pattern formation taking place on fractal
growth networks. The spatiotemporal dynamics corresponds to a coupled map system defined on the geometrical
support of a fractal growth network. Although many growth structures found in nature have random features, here we
study the case of simple, deterministic fractal growth networks. We focus on the changes occurred in spatiotemporal
patterns as a result of the fractal growth connectivity that describes the interactions in the system. InSection 2,
a model for the construction of fractal growth networks in any Euclidean space and a general notation for their
treatment are introduced. InSection 3, the coupled map models defined on fractal growth networks are presented.
The diffusion coupling among neighboring sites on a network is described by a matrix. The spectrum of eigenvalues
and eigenvectors of the coupling matrix is analyzed inSection 4. The eigenvectors constitute a complete basis
on which spatial patterns can be expressed by a linear combination.Section 5contains a study of the stability of
spatially uniform, periodic patterns on a fractal growth network for a local dynamics given by the logistic map.
Distinct features, emerging as a consequence of the fractal nature of the networks, allow for the selection of specific
spatial patterns as the parameters of the system are changed. Conclusions are presented inSection 6.

2. Model for fractal growth networks

Fractal growth networks can be generated in any Euclidean space of dimensiond by generalizing the fractal
growth model of Vicsek[9]. Starting from ad-dimensional hypercube, it is divided into 3d equal hypercubes. Of
these, only the central hypercube plus the 2d hypercubes connected to its vertices are kept. This process is repeated
for each of the 2d + 1 resulting hypercubes. At a level of constructionL, the network consists ofN = (2d + 1)L

hypercubical cells or nodes whose coordinates can be specified by a sequence of symbols (α1α2 · · ·αL), whereαi
can take any value in a collection of 2d + 1 different digits forming an enumeration system in base (2d + 1), which
we denote by{ε1, ε2, . . . , ε2d+1+1}. For example, ford = 2, we may choseαi ∈ {0,1,2,3,4}.

To fix the labels, we start at levelL = 1 where the labels of the 2d + 1 cells in the network have the form
(α1). The label (0) is assigned to the central cell, and the others 2d cells are labeled by (αi) 	= (0) in such a way
that the labels (αi) and (αj) of the two cells located at the opposite ends of each diagonal passing through the
central cell satisfy mod2d+1(αi + αj) = 0, where the additionαi + αj is defined modulo (2d + 1). Fig. 1(a) and
(b) show this notation for the fractal growth networks embedded in Euclidean spaces of dimensiond = 2 and 3,
respectively.

When the fractal network grows from level of constructionL to level (L + 1), each cell (α1α2 · · ·αL) is subdivided
into 2d + 1 cells, scaled down by a longitudinal factor of 3, and which are now labeled by (α1α2 · · ·αLαL+1), where
the firstL symbols of the sequence,α1α2 · · ·αL, are the same as in the parent cell, and to distinguish the (2d + 1)
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Fig. 1. (a) Fractal growth network embedded in Euclidean space of dimensiond = 2 at levels of constructionL = 1, 2 and 3, showing labels
on the cells. (b) Fractal growth network embedded in dimensiond = 3 at level of constructionL = 2, showing labels on the cells.
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daughter cells, the last symbolαL+1 is assigned similarly to the labels (α1) at the construction levelL = 1. From
the construction process, it follows that the fractal dimension of the network isdf = ln(2d + 1)/ ln 3.

The set of cells connected to the cell labeled by (α1α2 · · ·αL) at a level of constructionL is defined as the neigh-
borhood (nearest neighbors) of this cell, and will be denoted byN(α1α2 · · ·αL). Three types of cells can be identified
in a fractal growth network embedded in ad-dimensional Euclidean space: (i) centers, that are connected to 2d other
cells; (ii) joints, that are connected to two cells; (iii) edges, connected to just one cell. A sequence (α1α2 · · ·αL)
can be written as (α1 · · ·αL−sα

s
L−s+1) for somes ∈ {1,2, . . . , L − 1}, and whereαsi means the sequence ofs

symbolsαi. A center cell is labeled by a sequence (α1α2 · · ·αL−sα
s−1
L−s+10). Its neighborhood set consists of 2d

cells, labeled by the sequences (α1α2 · · ·αs−1
L−s+11), (α1α2 · · ·αL−sα

s−1
L−s+12), . . ., and (α1α2 · · ·αL−sα

s−1
L−s+12d),

respectively. A joint cell labeled by (α1 · · ·αL−sα
s
L−s+1), with αL−s+1 	= 0, has a neighborhood set with two ele-

ments. One is the center cell labeled by (α1 · · ·αL−sα
s−1
L−s+10). The other neighbor is another joint cell labeled by

(α1 · · ·αL−s−1αL−s+1β
s), if αL−s = 0; or by (α1 · · ·αL−s−10βs), if αL−s 	= 0; whereβ is an allowed symbol that

satisfies mod2d+1(αL−s+1 + β) = 0. This procedure identifies any two joint cells as reciprocal neighbors. On the
other hand, an edge cell labeled by the sequence (α1 · · ·αL−sα

s
L−s+1) can not be assigned a reciprocal neighbor from

the above procedure; thus this edge possesses only one neighbor, the center cell labeled by (α1 · · ·αL−sα
s−1
L−s+10).

Because the symbolsαi belong to an enumeration system in base (2d + 1), a cell in the network labeled by the
sequence (α1α2 · · ·αL) can be univocally associated to an integer indexi = 0,1,2, . . . , (2d + 1)L − 1, by the rule

(α1α2 · · ·αL) ↔ i =
L∑
j=1

αj(2
d + 1)L−j. (1)

As an illustration, consider the fractal growth network embedded in an Euclidean space of dimensiond = 2, as in
Fig. 1(a). At the level of constructionL = 3, the cell labeled by (233)= (232) is a joint cell and has indexi = 68,
according to the ruleEq. (1). Its two neighbors, labeled by (230) (a center cell) and (022)= (022) (another joint
cell), are assigned indexesi = 65 and 12, respectively. Similarly, the cell (422)= (422) is an edge with associated
indexi = 112; its only neighbor is the center cell (420), corresponding toi = 110.

3. Coupled map lattice model for pattern formation

A network might be considered as the spatial support of a dynamical spatiotemporal processes with either
discrete or continuous-time. Here we consider reaction–diffusion and pattern formation phenomena on fractal
growth networks. By associating a nonlinear function to each cell of a given fractal network and coupling these
functions through nearest-neighbor diffusion interaction, we define a coupled map lattice that describes a reaction–
diffusion dynamics as follows:

xt+1(i) = f (xt(i)) + γ
∑
j∈N(i)

(xt(j) − xt(i)), (2)

wherext(i) represents the state of the cell having indexi, assigned byEq. (1), at discrete timet; f (xt(i)) is
a nonlinear function specifying the local dynamics;N(i) is the neighborhood set of the cell with indexi; γ is a
parameter expressing the coupling strength among neighboring cells and it plays the role of a homogeneous diffusion
constant. The value ofγ must be in an interval such that the local variablesxt(i) in Eq. (2) are in the definition range
for the local mapf (xt(i)). The form of the coupling term inEq. (2) is usually called backward diffusive coupling
and corresponds to a discrete version of the Laplacian in reaction–diffusion equations. This coupled map model can
be generalized to include other coupling schemes, nonuniform coupling, or continuous-time local dynamics.
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Eq. (2) can be written in a vector form as

xt+1 = f (xt) + γMx t . (3)

The state vectorxt has N components [xt ]i = xt(i), i = 0, . . . , N − 1, corresponding to the statesxt(i) =
xt(α1α2 · · ·αL) of the cells on the network. TheN × N real, symmetric matrixM expresses the coupling among
theN componentsxt(i). For a fractal growth network embedded in an Euclidean space of dimensiond at the level
of constructionL, the components of the corresponding matrixM , denoted byM(i, j) (i, j = 0,1, . . . , N − 1), are

M(i, j) = M(j, i) =




1 if j ∈ N(i),

−|N(i)| if i = j,

0 elsewhere,

(4)

where|N(i)| is the cardinality of the neighborhood setN(i) = N(α1α2 · · ·αL). The matrixM plays the role of the
spatially discrete diffusion operator on these networks, similar to the Laplacian in a spatially continuous reaction–
diffusion equation.

4. Spectrum of the coupling matrix

The spatial patterns that can take place on fractal growth networks are determined by the eigenmodes of the
coupling matrixM , similarly to reaction–diffusion processes on regular Euclidean lattices[11,12]. On the other
hand, the stability of the synchronized states is related to the set of eigenvalues ofM .

In order to analyze the eigenvector problem, consider a fractal growth network embedded in an Euclidean space
of dimensiond, at level of constructionL, on which a spatiotemporal dynamics has been defined in the vector form
of Eq.(3). The complete set of orthonormal eigenvectors of the corresponding matrixM can be described as the
superposition of two distinct subsets of eigenmodes. One subset, which will be denoted by{umn}, contains those
eigenvectors associated to nondegenerate eigenvalues; and the other subset comprises the eigenvectors corresponding
to degenerate eigenvalues ofM , and will be represented by{vgmn} (the indices refer to the degeneracy, as explained
bellow). Thus, the complete set of eigenvectors ofM is {umn} ∪ {vgms}. Each eigenvector describes a basic spatial
pattern that may arise on a fractal growth network characterized by an embedding dimensiond and a level of
constructionL. As illustration, we shall show the eigenvalues and eigenvectors of the coupling matrix corresponding
to the fractal growth network embedded in the plane.

4.1. Nondegenerate eigenvectors

The eigenvectors ofM belonging to the nondegenerate subset{umn} satisfy

Mumn = bmnumn, if m = 0, n = 0, if m = 1,2, . . . , L, n = 1,2, . . . ,3m−1, (5)

where bmn is a eigenvalue associated to the eigenvectorumn. The i component of vectorumn is [umn]i =
umn(α1α2 · · ·αL), according to the rule inEq. (1). The number of eigenvectors in this subset and that of their
corresponding eigenvalues, denoted byν(b), is

ν(b) = 1 +
L∑

m=1

3m−1 = 3L + 1

2
. (6)

Any eigenvectorumn in the nondegenerate subset{umn} is characterized by the following property: its components
corresponding to cells of the same type on the network and located at the same distance (measured in number of
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cells) from the center cell (0L) are identical. Because of this property, we also refer to the elements in the subset
{umn} assymmetriceigenvectors.

The indexmcorresponds to the level of construction at which the eigenvaluebmn first appears, and it is related
to the length of the longest diagonals that arise as the fractal growths up to the levelL. At a level of construction
L > 1 there is a total of (2d + 1)L−1 + 1 diagonals on the network, which can be classified inL distinct families
or groups according to their lengths, measured in terms of number of cells on the diagonal. Each different family
of diagonals can be identified by the indexm = 1,2, . . . , L, and each family contains all the diagonals of the
network that have 3m cells, and thus can support a wavelength of 3m. The indexm gives the step in the construction
process at which the family of diagonals of length 3m has first appeared. For a network defined at levelL, there are
(2d × (2d + 1)L−m−1) diagonals in each family characterized bym = 1,2, . . . , L − 1, and two diagonals in the
family corresponding tom = L. For example, inFig. 1(c) withd = 2 andL = 3, there are three families of diagonals
according to their lengths: the familym = 1 contains 20 short diagonals with a length of three cells; the family
m = 2 has four medium diagonals measuring nine cells; and the familym = 3 possesses two long diagonals with 27
cells. Additionally, we must count the familym = 0 associated to diagonals having one element; this corresponds
to the spatially homogeneous eigenvector. Thus, the indexm = 0,1, . . . , L, indicates the level of construction at
which the family of diagonals characterized by the indexm and having the same length of 3m cells has appeared.
The family of diagonals identified bym remains in the fractal as the network grows up to levelL.

The indexn counts the number of distinct symmetric eigenvectors that have originated each time a new family
of diagonals of length 3m cells appear, and it depends on the number of intersections that a new diagonal of length
3m has with the other diagonals already present in the network. There is one intersection for each three cells in a
diagonal; thus the number of intersections is 3m−1. These intersections determine the different wavelengths that
can be formed on a diagonal of length 3m. The number of these different wavelengths having reflection symmetry
about the long diagonal of length 3m originated at stepmcan be counted byn = 1,2, . . . ,3m−1.

The spatially homogeneous eigenvector of the matrixM , which we denote byu00, belongs to the subset{umn}
and its componentsN are

u00(α1 · · ·αL) = N−1/2; ∀L, ∀αk (7)

and

u00 = 1√
N

col(1,1, . . . ,1). (8)

Since the eigenvectors ofM are mutually orthogonal, all others eigenmodes in either subset{umn} or {vgmn} must
satisfy

∑
α1,...,αL

umn(α1 · · ·αL) = 0; ∀αk, m 	= 0;
∑

α1,...,αL

vgmn(α1 · · ·αL) = 0; ∀αk, (9)

that is, the sum over the components of any eigenvector ofM , different ofu00, is zero.
Fig. 2(a) shows theν(b) = 5 nondegenerate eigenvectors and their associated eigenvalues of the coupling matrix

corresponding to a fractal growth network embedded in dimensiond = 2 and having a level of constructionL = 2.
Fig. 2(b) shows the subset of degenerate eigenvectorsvgms and the eigenvalues corresponding to a fractal growth
network embedded in an Euclidean space of dimensiond = 2, at level of constructionL = 2.

The set of eigenvalues arising fromEq. (5) may be ordered by decreasing value. By Gershgorin’s theorem[13],
the homogeneous eigenvector possesses the largest eigenvalue ofM , which isb00 = 0. In the case of embedding
dimensiond = 2, the smallest eigenvalue for largeL is found to be

lim
L→∞ bL3L−1 = −(4 +

√
2). (10)
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Fig. 2. Fractal growth network corresponding to embedding dimensiond = 2 and level of constructionL = 2. (a) The five nondegenerated,
symmetric eigenvectorsumn and their corresponding eigenvalues. (b) Degenerate eigenvectorsvmn and their corresponding eigenvalues.

For each indexm > 1, the eigenvalues{bm1, bm2, . . . , bm3m−1} arise in groups of three,bmn, bmn′ andbmn′′ , where

n′ = 2 × 3m−1 − n + 1; n′′ = 2 × 3m−1 + n. (11)

The sum of the eigenvalues in each of these groups is constant, and gives

bmn + bmn′ + bmn′′ = −(2d + 4). (12)

Because of (12), the eigenvalues associated to the nondegenerate eigenvectors satisfy

L∑
m=0

3m−1∑
n=0

bmn = −(2d + 4)
L∑

m=1

3m−1 = −(2d−1 + 2)(3L − 1). (13)

Fig. 3 shows the spectrum of eigenvalues{bmn}, indicated by empty symbols, for a fractal growth network
embedded in an Euclidean space of dimensiond = 2, at successive construction levelsL. Eigenvalues associated
to degenerate eigenvectors of the coupling matrixM , to be discussed next, are also shown inFig. 3.

4.2. Degenerated eigenvectors

The subset of degenerate eigenvectors{vgmn} of the matrixM satisfy

Mv gmn = amnvgmn, m = 1,2, . . . , L; n = 1,2, . . . ,3m−1, (14)

whereamn is the eigenvalue associated to a group ofΩ degenerate eigenvectors{v1
mn, v

2
mn, . . . , v

Ω
mn} belonging

to the subset{vgmn}. The indexg runs from 1 to a valueΩ and counts the different eigenvectors associated to the
degenerate eigenvalueamn, as it will be shown bellow. The integer indicesmandn label different eigenvaluesamn.
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Fig. 3. Spectrum of eigenvalues of the coupling matrix at increasing construction levelsL, for a fractal growth network embedded in dimension
d = 2. (a) Eigenvaluesbmn are indicated by empty symbols:b00 (�); b11 (�); b2n (�); b3n (∇); b4n (�). Other symbols indicate eigenvaluesamn
as follows:a1n (�); a2n (•); a3n (�); a4n (×); a5n (+). (b) Magnification of the dotted region in (a).

The i-component of a vectorvgmn corresponds to a cell of the network labeled by the ruleEq. (1), i.e., [vgmn]i =
vgmn(α1α2 · · ·αL). The eigenmodes in the subset{vgmn} are characterized by the following two properties:

vgmn(α1 · · ·αL−m0m) = 0; m = 1,2, . . . , L − 1, (15)

that is, all the components ofvgmn corresponding to center cells formed in the firstL − m levels of construction
vanish

∑
α1,α2,...,αL−1

vgmn(α1α2 · · ·αL−10) = 0; (16)

that is, the sum of the components associated to the center cells in a network spatially described by a vectorvgms, is
zero.

In contrast to the eigenvectors in the nondegenerate subset, an eigenvectorvgms is nonsymmetric; however it
exhibits a partial regularity, having all its components corresponding to center cells equal to zero if they originated
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at the level of constructionL − m. The indexm counts the number of additional levels of construction in which
nonvanishing center cells have appear up to levelL; and its possible values arem = 1,2, . . . , L. There are (2d +
1)L−m vanishing center cells in an eigenvectorvgms. Each null center cell in the eigenvector is the center of 2d−1 − 1
diagonals, except the cell (0L) that is the center of one additional diagonal. Thus, adding the additional diagonal of
the center cell (0L), there are (2d + 1)L−m(2d−1 − 1) + 1 diagonals whose centers are null center cells. The index
n counts the number of possible intersections that these diagonals have with other diagonals; its possible values are
n = 1,2, . . . ,3m−1.

Because an eigenvectorvgms is a nonsymmetric mode, the two edge cells at the ends of each of the
(2d + 1)L−m(2d−1 − 1) + 1 diagonals having null center cells are independent of each other. Therefore, there
exist 2[(2d + 1)L−m(2d−1 − 1) + 1] edge cells with this characteristics, for given values ofmandn. However, due
to the orthogonality property,Eq. (9), the total number of linearly independent eigenvectorsvgms possessing the
same indicesm andn is Ω = 2[(2d + 1)L−m(2d−1 − 1) + 1] − 1. The indexg counts the number of independent
eigenvectors associated to an eigenvalueamn, and it may take the valuesg = 1,2, . . . ,Ω. In this fashion, the subset
of degenerate eigenvectors{vgms} of the coupling matrixM corresponding to a fractal growth network embedded in
dimensiond and at level of constructionL is fully described.

In the case of embedding dimensiond = 2, there are 5L−m vanishing center cells in an eigenvectorvgms and there
are 5L−m + 1 diagonals whose centers are null center cells. The number of linearly independent eigenvectorsvgms
having the same indicesmandn isΩ = 2(5L−m + 1) − 1 = 2 × 5L−m + 1. Thus, the indexgmay take the values
g = 2, . . . ,2 × 5L−m + 1.

The number of different eigenvalues,amn, that belong to the spectrum of matrixM for a fractal growth network
at construction levelL, is

ν(a) =
L∑

m=1

3m−1 = 3L − 1

2
. (17)

At each levelm > 1, there appear 3m−1 new eigenvaluesamn. Similarly to the nondegenerate eigenvalues, theamn
can be grouped in sets of three eigenvalues that satisfy

amn + amn′ + amn′′ = −(2d + 4), (18)

where

n′ = 2 × 3m−1 − n + 1, n′′ = 2 × 3m−1 + n, (19)

and therefore the total sum of the degenerate eigenvaluesamn of a matrixM corresponding to a fractal growth
network embedded in a dimensiond and at level of constructionL gives

L∑
m=1

3m−1∑
n=1

amn = −(2d + 4)
L∑

m=1

3m−1 = −(2d−1 + 2)(3L−1 − 1). (20)

Fig. 3 shows the spectrum of eigenvalues{amn} ∪ {bmn} for a fractal growth network embedded in Euclidean
space of dimensiond = 2 at successive levels of constructionL. The distribution of the spectrum of eigenvalues of
the coupling matrixM can be seen as a function of the growth process of the fractal structure. Note that the full
spectrum{amn} ∪ {bmn} is always contained between the eigenvaluesb00 = 0 andbL3L−1.

FromEqs. (6) and (17), the total number of distinct eigenvalues ofM , including both typesamn andbmn, and
denoted byν(M ) is given by

ν(M ) = ν(b) + ν(a) = 1
2(3L + 1) + 1

2(3L − 1) = 3L. (21)

Since there appear 3m−1 new eigenvalues of typeamn at each level of constructionm, and there areΩ = 2[(2d +
1)L−m(2d−1 − 1) + 1] − 1 eigenvectorsvgms associated to each eigenvalueamn, the total number of independent
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eigenvectors in the subset{vgmn} is

L∑
m=1

Ω(3m−1) = (2d + 1)L − 3L + 1

2
. (22)

FromEq. (6) we know that the number of independent eigenvectors in the subset{umn} is (3L + 1)/2. Therefore,
the total number of independent eigenvectors ofM is

1
2(3L + 1) + (2d + 1)L − 1

2(3L + 1) = (2d + 1)L = N, (23)

as should be expected.
Fig. 4(a) shows the complete spectrum of eigenvalues ofM and the degeneracy fraction of each eigenvalue,

for a fractal growth network embedded in an Euclidean space of dimensiond = 2, at level of constructionL = 5.
The degeneracyΩ = 2 × 55−m + 1 of each of theν(a) = (35 − 1)/2 = 121 eigenvaluesamn is plotted as a vertical
bar, while theν(b) = (35 + 1)/2 = 122 different eigenvaluesbmn are indicated by plus symbols (+) and they are
nondegenerate. It is clear that both the distribution of eigenvalues and their degeneracies are nonuniform. The scaling
properties of the spectrum of eigenvalues of the coupling matrix can also be conveniently represented by plotting
the accumulated sum of the degeneracies of all eigenvalues, that is, the measure of the spectrum ofM (denoted by
ρ), on the eigenvalue axis for largeL, as inFig. 4(b). The resulting graph exhibits the features of a devil staircase,
a fractal curve arising in a variety of nonlinear phenomena.

The eigenvectors of the coupling matrix reflect the topology of the fractal growth network and they are analogous
to the Fourier eigenmodes appearing in regular Euclidean lattices. In this sense, the symmetry properties of the
nondegenerate eigenvectors{umn} and the conditions given inEqs. (15) and (16) for the degenerate eigenvectors
{vgms} represent different wavelengths on a fractal growth network embedded in an Euclidean space of dimensiond

at level of constructionL.

5. Synchronized states and pattern selection

Synchronized states in spatiotemporal systems are relevant since we are often interested in mechanisms by which
a spatial pattern can be selected in a uniform system that breaks its symmetry as a parameter is changed.

Consider spatially synchronized, period-K states such asxt(α1 · · ·αL) = x̄k, ∀(α1 · · ·αl); where x̄k, (k =
1,2, . . . , K), is a period-K orbit of the local map, satisfyingf (K)(x̄k) = x̄k. The linear stability analysis of pe-
riodic, synchronized states in coupled map lattices is carried out by the diagonalization of the matrixM in Eq. (3),
and it leads to the conditions[11]

K∏
k=1

|f ′(x̄k) + γµ| < 1, (24)

whereµ is any of theν(M ) = 3L eigenvalues, associated to either subset of eigenvectors{umn} or {vgms}, of the
coupling matrixM corresponding to a fractal growth network embedded in ad-dimensional Euclidean space at
level of constructionL.

The nonuniform distribution of the eigenvalue spectrum is manifested in the stability of the synchronized states
throughEq. (24) and gives rise to marked differences when compared, for instance, with the bifurcation structure
on regular lattices. As an application, consider a local dynamics described by the logistic map,f (x) = λx(1 − x).
In this case, the stability conditions,Eq. (24), for the periodK = 2p, synchronized state yield the set of boundary
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Fig. 4. (a) Distribution and degeneracies of the spectrum of eigenvalues of the coupling matrixM for a fractal growth network embedded in
d = 2 at level of constructionL = 5. The eigenvaluesbmn are indicated with (+) just below the zero line, for clarity. The vertical axis shows the
degeneracy of the eigenvalues{amn} divided byN, indicated by a vertical bar at each eigenvalue. (b) The measure of the full set of eigenvalues
of M .

curves

S
p
L(µ) ≡

2p∏
k=1

[λ(1 − 2x̄k) + γµ] = ±1. (25)

For each sign,Eq. (25) give 3L boundary curves in the plane (γ, λ), corresponding to the different values ofµ; these
curves determine the stability regions of the period-2p, synchronized states on the network.

The scaling structure for the period-2p, synchronized states in fractal growth networks is similar to that of a any
lattice described by a diffusive coupling matrix, since the form ofEq. (25) is the same in any case. As for regular
Euclidean lattices[11,12], the stability regions for the period-2p, synchronized states in the (γ, λ) plane scale as
λ ∼ δ−p, andγ ∼ α−p, whereδ = 4.669. . . andα = −2.502. . . are Feigenbaum’s scaling constants for the period
doubling transition to chaos. However, the specific structure of the eigenvalue spectrum of the coupling matrix
determines the shapes and gaps of the regions of stability of synchronized, periodic states.
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FromEq. (25), the boundary curves for the synchronized, fixed point state (p = 0) on the parameter plane (γ, λ)
are given by the straight lines

λ = µγ + 1, λ = µγ + 3, (26)

which are first crossed for the most negative eigenvalue,µ = bL3L−1. Similarly, the boundaries period-two (p =
1), synchronized state on a fractal growth network embedded in an Euclidean space of dimensiond = 2 and at
construction levelL = 3 are given by the two sets

S1
3(amn) = −λ2 + 2λ + 4 + γamn(γamn − 2) = ±1, (27)

Fig. 5. The boundary curvesS1
3 = ±1 given byEqs. (27) and (28) for the period-two, synchronized states of a fractal growth network at level

of constructionL = 3, embedded ind = 2. (a) The upper curves correspond to the r.h.s. ofEqs. (27) and (28) equal to−1 for both types of
eigenvalues. Arrows indicate the boundary curveS1

3(b39) = +1. The interior region bounded by these curves is where stable, synchronized,
period-two states exist in the parameter plane (λ, γ). (b) Magnification of the upper curves in (a), showing the gaps in the stability boundaries
of the period-two, synchronized states. Arrows indicate boundary curves corresponding to several eigenvalues. The symbol (�) just beyond the
boundaryS1

3(b36) = −1 indicates the values of the parametersγ andλ used inFig. 6.
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and

S1
3(bmn) = −λ2 + 2λ + 4 + γbmn(γbmn − 2) = ±1. (28)

Fig. 5(a) shows the boundary curvesEqs. (27) and (28) on the plane (γ, λ). The boundary between the synchro-
nized, fixed point state and the synchronized period-two state occurs atλ = 3. The upper boundaries (corresponding
to −1 in the r.h.s. ofEqs. (27) and (28)) have minimaλmin = 1 + √

5 at valuesγmin = 1/bmn andγmin = 1/amn
(for any period-2p, λmin depends onp). Fig. 5(b) shows a magnification ofFig. 5(a) around the minima of the upper
boundaries. The distribution of the minimaγmin and the presence of nonuniformly distributed gaps in the boundary
curves is a manifestation of the nonuniform structure of the eigenvalue spectrum. Since the nonuniformity in the
distribution of eigenvalues persists at any construction levelL of a fractal growth network, this property allows for
regions of stability of the synchronized states or gaps characteristic of fractal networks and which are not present
in other geometries, for example in regular lattices, where the distribution of eigenvalues of the coupling matrix is
uniform and continuous in the limit of infinite size lattices.

The set of eigenvectors{umn} ∪ {vgmn} of the coupling matrixM constitute a complete basis (normal modes) on
which a statext of the system can be represented as a linear combination of these vectors. Thus the evolution ofxt
reflects the stabilities of the normal modes.Fig. 5(b) shows how a spatially inhomogeneous pattern may be selected
as the synchronized state becomes unstable through crossing of the upper boundary; the first boundary segment
crossed determines the character of the instability and the properties of the selected pattern. For example, consider
an initial state consisting of a small perturbation of the synchronized, period-2 state at parameter values just beyond
the boundary segment corresponding to the eigenvaluea36, indicated by a cross inFig. 5(b), where this initial state
is unstable. The inhomogeneous period-four final spatial pattern is represented inFig. 6; it corresponds to a linear
combination of the three eigenmodes{vg36; g = 1,2,3} associated to the degenerate eigenvaluea36 of the matrix
M corresponding to the fractal network embedded in dimensiond = 2 at level of constructionL = 3. All other
modes are unstable in this region of parameter space. For any construction levelL of the fractal network, and any
period-2p, the boundary curveS1

3(a36) = −1 separates a gap of the synchronized state from the stable region for

Fig. 6. Inhomogeneous, period-four state at parameter valuesγ = −0.296,λ = 3.24. This pattern is a linear combination of the three eigenvectors
associated to the eigenvaluea3 6.
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the eigenmodesvg36 corresponding toa36. Therefore, a transition between these two spatial patterns can always be
observed in the appropriate regions of the parameter plane (γ, λ).

6. Conclusions

The underlying inhomogeneous structure of fractal growth networks has significant effects on the spatial patterns
that can be formed by reaction–diffusion processes on these geometrical supports. In systems of interacting elements,
such as the models considered in this article, the coupling matrix contains the connectivity of the network. The set
of eigenvectors of the coupling matrix reflect this connectivity. The spatial patterns that can arise in fractal growth
networks are determined by the eigenvectors of the diffusion coupling matrixM , which constitute a complete basis
on which any spatial mode can be expressed as a linear combination. These eigenvectors have complex spatial forms
but they are analogous to the Fourier eigenmodes arising in regular Euclidean lattices. On the other hand, the stability
of the synchronized states is determined by the eigenvalues ofM . The density distribution of these eigenvalues and
their degeneracy are nonuniform. These features affect the bifurcation properties of dynamical systems such as
coupled maps defined on fractal growth networks. The scaling structure of the synchronized, period-doubled states
on the space of parameters of the system is similar for both uniform and fractal networks but the nature of the
bifurcation boundaries is different. For fractal growth networks, the nonuniform distribution of eigenvalues leads to
gaps in the boundary curves separating stable synchronized states that are not present for coupled maps on uniform
lattices, where the spectrum of eigenvalues is continuous. These gaps allow for the selection of specific spatial
patterns arising from a uniform, synchronized state by appropriately changing the parameters of the system.

Although we have presented only the simplest spatiotemporal patterns that can be formed on fractal growth
structures, the formalism introduced in this article can be applied to many other processes, such as excitable
dynamics, nontrivial collective behavior, phase-ordering, domain segregation, turbulence, etc. The formalism is
also useful for cellular automata models and continuous-time local dynamics on fractal growth networks.

The study of dynamical systems defined on nonuniform spatial supports, such as fractal growth networks, provides
insight into the relationship between topology and spatiotemporal phenomena in complex networks.
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