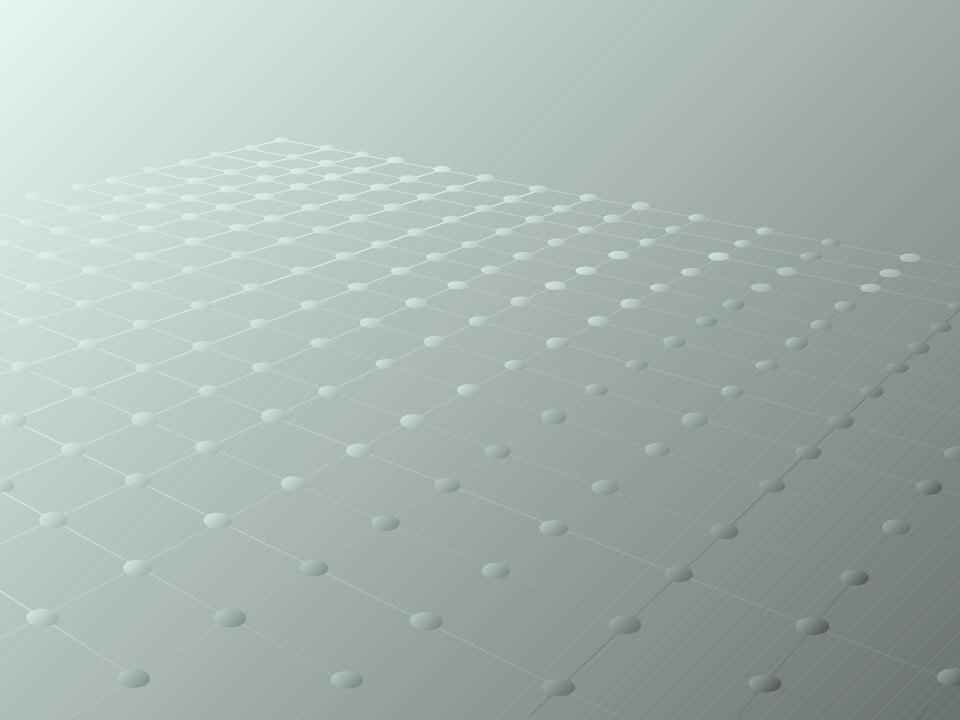
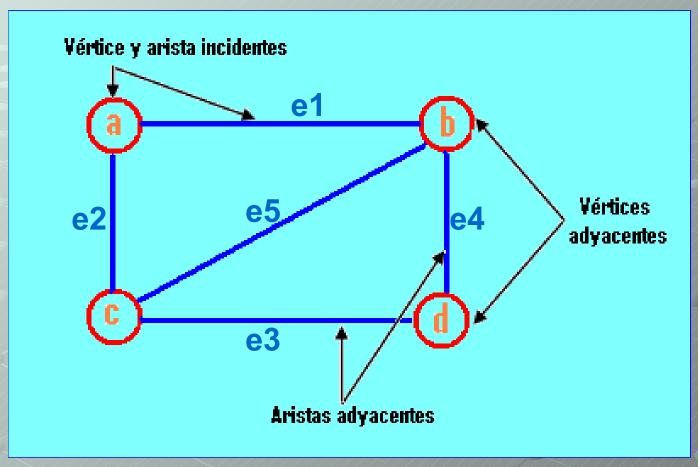
GRAFOS

Ricardo Estévez Basanta C.I. 12.999.495



GRAFO o grafo simple.

$$G=(v,A)$$

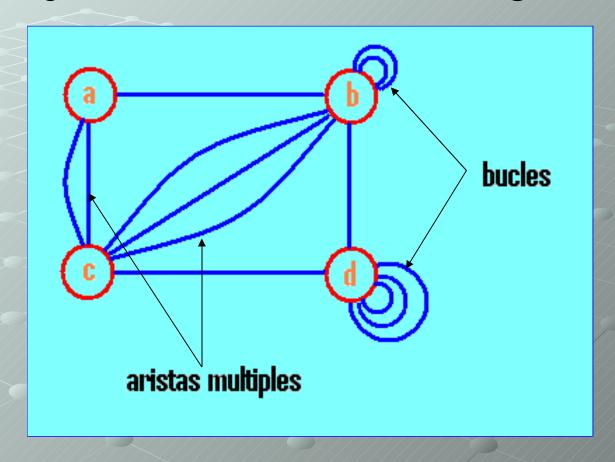


 $V={a,b,c,d}$

A={e1, e2, e3, e4, e5}

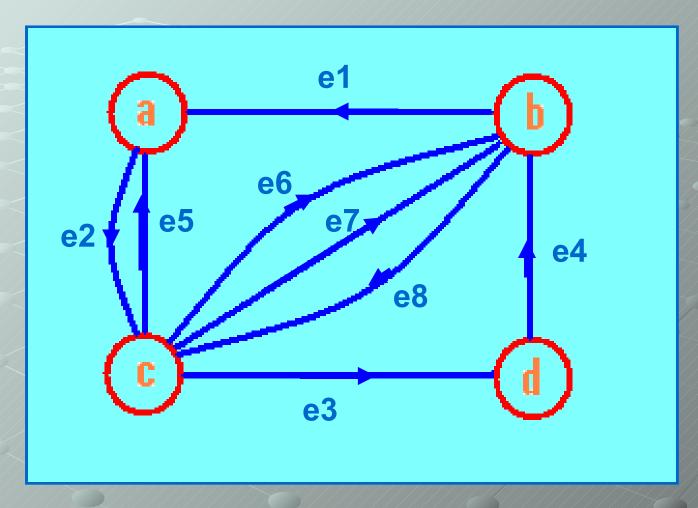
Grado de un vértice: d(a)=2

Un grafo con bucles se llama seudógrafo.

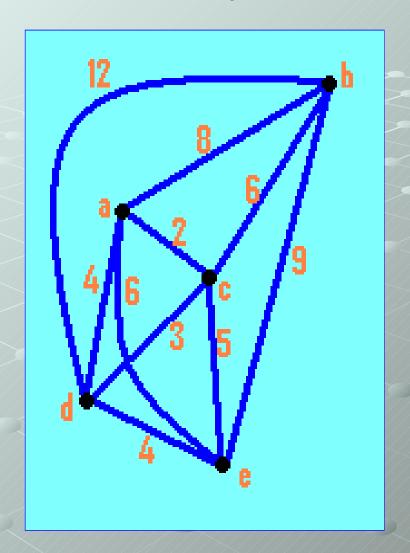


Un grafo con múltiples aristas se llama multígrafo

Grafo dirigido, digrafo.



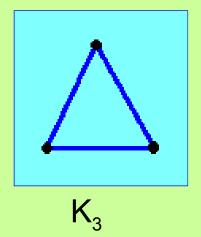
Gráfica con pesos

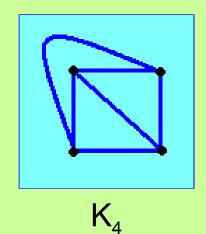


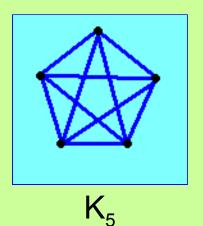
Caminos de *a* a *e* que pasan por cada vértice exactamente una vez y sus longitudes.

Camino	Longitud			
a, b, c, d, e	21			
a, b, d, c, e	28			
a, c, b, d, e	24			
a, c, d, b, e	26			
a, d, b, c, e	27			
a, d, c, b, e	22			

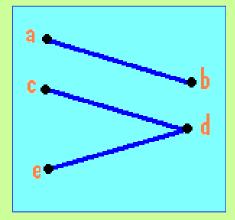
Gráfica completa de n vértices: K_n



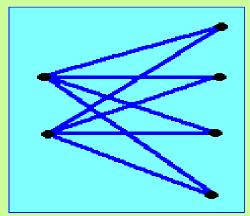




Gráficas Bipartitas



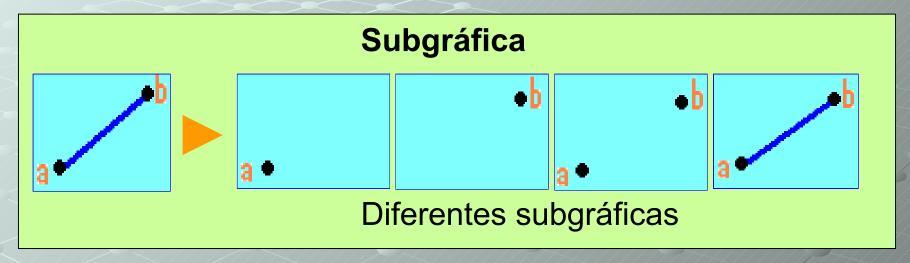
$$V_1 = \{a,c,e\}, V_2 = \{b,d\}$$



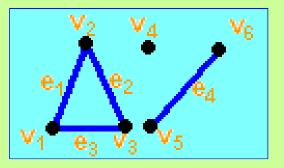
Gráfica bipartita completa $K_{2,4}$

Caminos y ciclos

Un grafo G es conexo si entre cada par de vértices de G existe un camino.

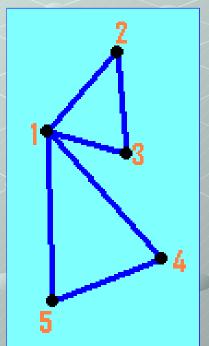


Componentes



$$\begin{aligned} G_1 &= (V_1, E_1) \to V_1 &= \{v_1, v_2, v_3\} & E_1 &= \{e_1, e_2, e_3\} \\ G_2 &= (V_2, E_2) \to V_2 &= \{v_4\} & E_2 &= \{\emptyset\} \\ G_3 &= (V_3, E_3) \to V_3 &= \{v_5, v_6\} & E_3 &= \{e_4\} \end{aligned}$$

- •Un camino simple de v a w es un camino de v a w sin vértices repetidos.
- •Un **ciclo** es un camino de longitud distinta de cero de *v* a *v*, sin aristas repetidas.
- •Un ciclo simple es un ciclo de *v* a *v* en el cual no existen vértices repetidos, excepto por el vértice inicial y final.



Camino simple \rightarrow (4,5,1,3)

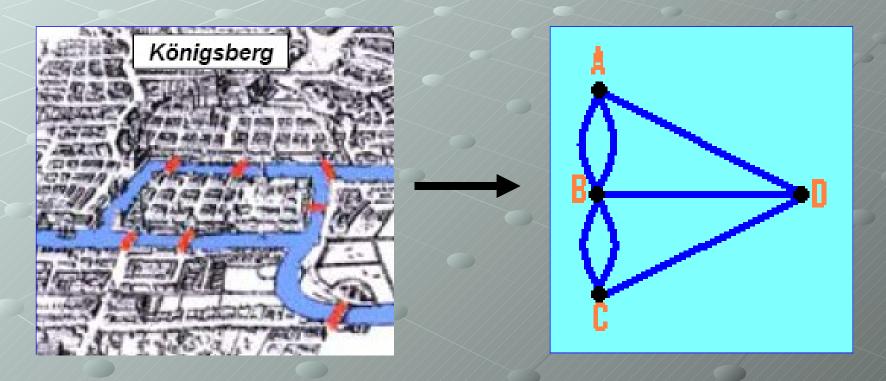
Ciclo \rightarrow (1,4,5,1,3,2,1)

Ciclo simple \rightarrow (5,4,1,5)

Ciclos de Euler

Un ciclo de Euler de una gráfica G incluye todas las aristas exactamente una vez y todos los vértices.

Si una gráfica G tiene un ciclo de Euler, entonces G es conexa y cada vértice tiene grado par.



Algoritmo de Fleury

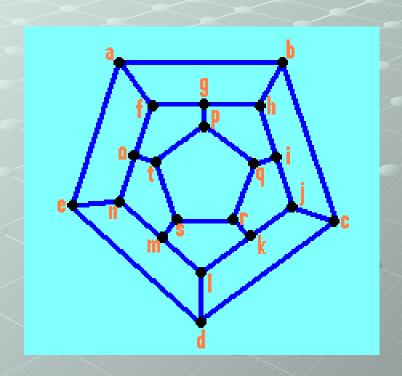
- Paso 1.- Se comienza en un vértice cualquiera v₀.
- Paso 2.- Si se ha construido el camino v₀ e₁ v₁ e₂...v_{k-1} e_k v_k con aristas distintas, se elige la arista siguiente e_{k+1} con las condiciones:
 - (1) e_{k+1} incidente con v_k
 - (2) no ser puente en el grafo $G = \{e_1, e_2, ..., e_k\}$ (salvo

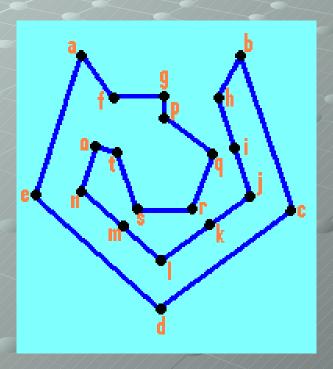
que no haya alternativa).

Paso 3.- Se sigue hasta que el camino contenga todas las aristas.

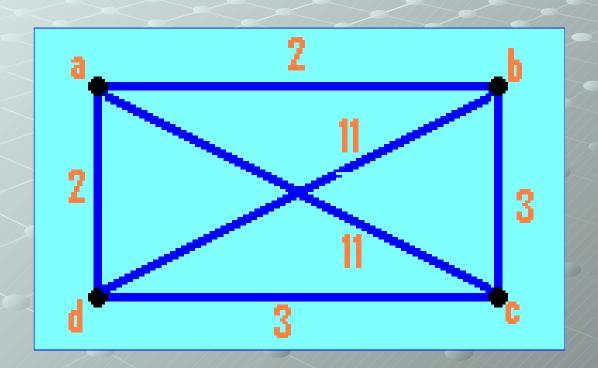
Ciclos hamiltonianos y el problema del agente viajero

Un ciclo hamiltoniano en una gráfica es un ciclo que contiene cada vértice del grafo exactamente una vez.





El problema del agente viajero: dada una gráfica con pesos G, determinar un ciclo hamiltoniano de longitud mínima en G.



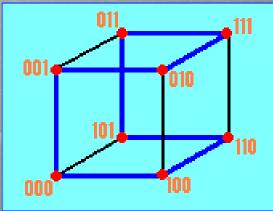
Solución: C=(a,b,c,d,a)

Código de Gray

Alfabeto I={0,1} 2ⁿ palabras de longitud n.

Un **código de Gray** de orden n es una ordenación de esas 2ⁿ palabras tal que palabras consecutivas difieren en un sólo dígito.

/ X //	G ₁ :	0	1							
\	G ₁ r:	1	0							
N N	G ₁ ':	00	01							
	G ₁ ":	11	10							
	G ₂ :	00	01	11	10					
	G ₂ R:	10	11	01	00					
	G ₂ ':	000	001	011	010					
	G ₂ ":	110	111	101	100					
			001	011	010	110	111	101	100	

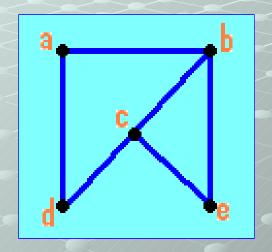


Algoritmo para la ruta más corta

- 1. procedure dijkstra(w,a,z,L)
- 2. L(a):=0
- 3. for todos los vértices x≠a do
- $4. \qquad L(x) := \infty$
- 5. T:=conjunto de todos los vértices
- 6. while $z \in T$ do
- 7. begin
- 8. elegir $v \in T$ con L(v) mínimo
- 9. for cada x Tadyacente a v do
- 10. $L(x):=\min\{L(x),L(v)+w(v,x)\}$
- 11. end
- 12.end dijkstra

Representaciones gráficas

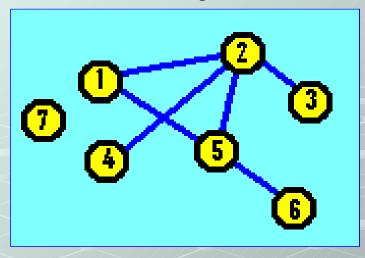
Matriz adyacencia

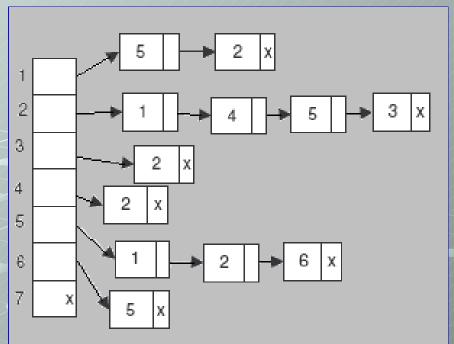


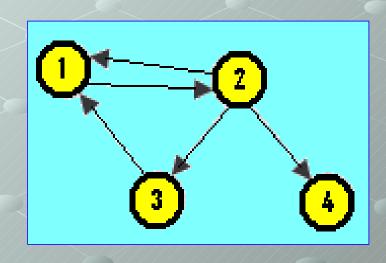
$$A = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ e & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

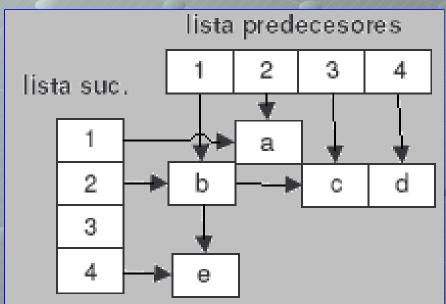
$$A^{2} = \begin{pmatrix} a & b & c & d & e \\ a & 2 & 0 & 2 & 0 & 1 \\ 0 & 3 & 1 & 2 & 1 \\ 2 & 1 & 3 & 0 & 1 \\ 2 & 1 & 3 & 0 & 1 \\ 0 & 2 & 0 & 2 & 1 \\ e & 1 & 1 & 1 & 2 \end{pmatrix}$$

Listas de adyacencia

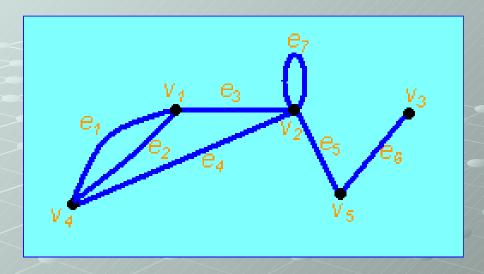




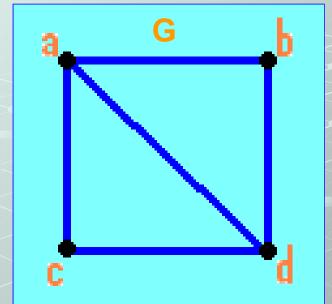


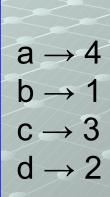


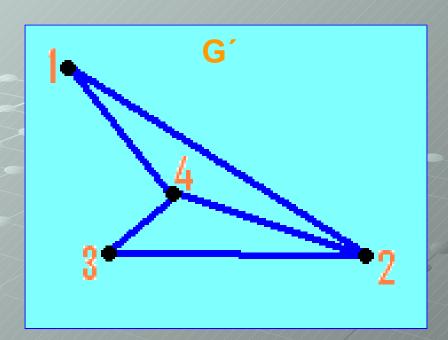
Matriz incidencia



Isomorfismo de gráficas







G y G' son isomorfos si existe f: $V \rightarrow V'$ que conserva la adyacencia.

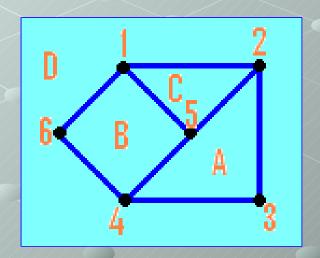
u,v son adyacentes \leftrightarrow f(u), f(v) son adyacentes.

Gráficas planas

Una gráfica es plana si se puede trazar en un plano sin que se crucen sus aristas.

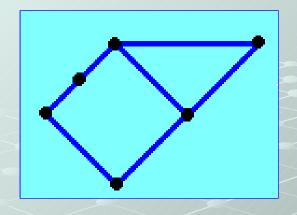
Si la grafica es plana y conexa se forman caras (f) entre sus aristas.

Una cara queda caracterizada por el ciclo que forma su frontera.

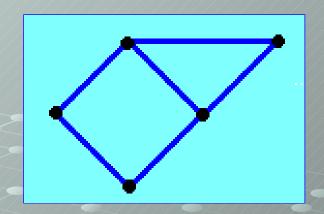


$$f = e - v + 2$$

Gráficas homeomorfas

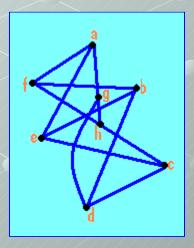


Reducción en serie

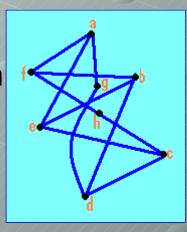


Teorema de Kuratowski

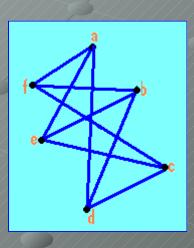
Una gráfica G es plana si y sólo si G no contiene una subgráfica homeomorfa a K₅ o K₃.



Eliminación de la arista (g,h)

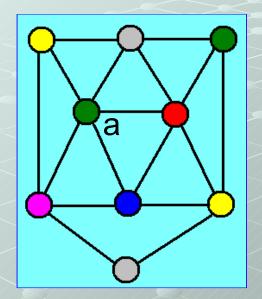


Reducción de serie



Coloración de gafos

Coloración de vértices



Vértices adyacentes reciben el mismo color.

Los vértices del mismo color forman una clase de color.

$$V = V_1 \cup V_2 \cup V_3 \cup V_4 \cup V_5 \cup V_6$$

$$V_1 = \{amarillos\}, V_2 = \{verdes\}...$$

Número cromático $\{\chi(G)\}\$ X(G)=4

$$\longrightarrow$$
 X(G)=4

Número de independencia $\{\beta(G)\}\$ \rightarrow $\beta(G)=4$

Número de clique $\{\omega(G)\}\$ \longrightarrow $\omega(G)=3$

gs(a)=5Grado de saturación {gs(G)}

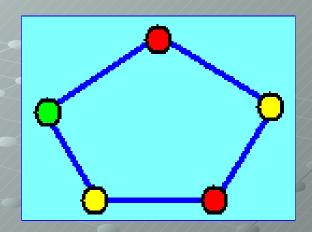
Propiedades del número cromático

•χ(G)≤n, con *n* el número de vértices.

$$\cdot \chi(K_n)=n$$

•x(G)=2 ↔ es un grafo bipartito.

•χ(G)≥3 ↔ tiene ciclo impar.



•Si G contiene a K_n como subgrafo χ(G)≥n.

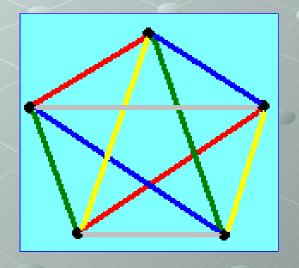
•χ(G)≥ω(G).

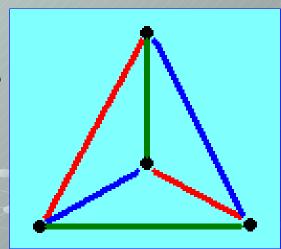
•χ(G)≤Δ(G)+1, donde Δ(G) es el grado máximo de G.

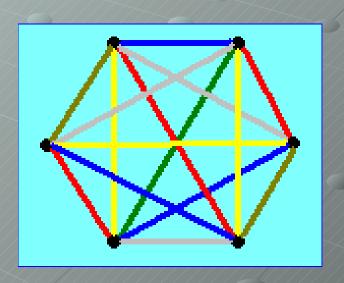
Coloración de aristas.

Índice cromático $\{\chi_{|}(G)\} \longrightarrow \chi_{|}(G)=3$

- \cdot χ (G)≥ Δ (G).
- •Si K_n es impar, $\chi(K_n)=n=\Delta+1$.
- •Si K_n es par, $\chi(Kn)=n-1=\Delta$.



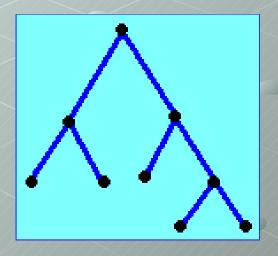


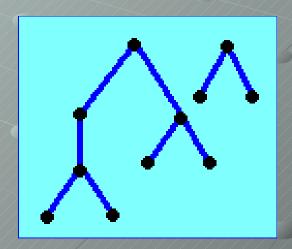


Árboles

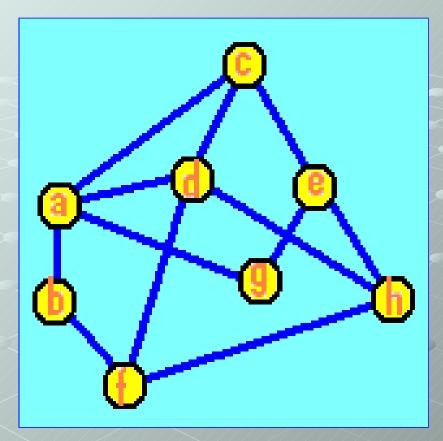
Un bosque es un grafo acíclico. Un árbol es un grafo conexo y acíclico.

- Entre cada par de vértices existe un camino único.
- Toda arista es puente.
- Un árbol de n vértices tiene n-1 aristas
- Todo árbol no trivial tiene al menos dos hojas





Recorrido en profundidad



Camino: a

Camino: a,b

Camino: a,b,f

Camino: a,b,f,h

Camino: a,b,f,h,e

Camino: a,b,f,h,e,c

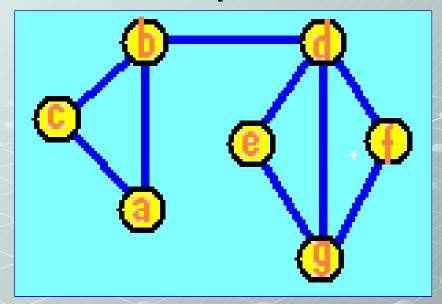
Camino: a,b,f,h,e,c,d

Camino: a,b,f,h,e,c

Camino: a,b,f,h,e

Camino: a,b,f,h,e,g

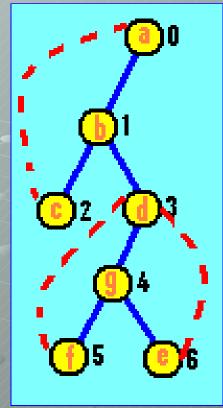
Recorrido en profundidad



Índice de búsqueda df(v).

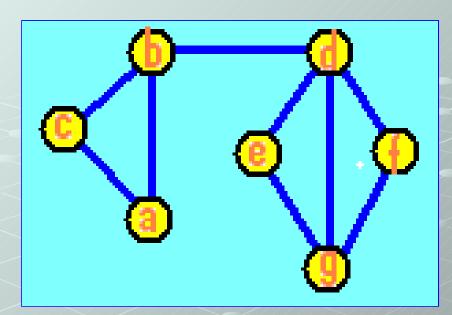
Aristas en T.

Aristas que no están en T, de retroceso.



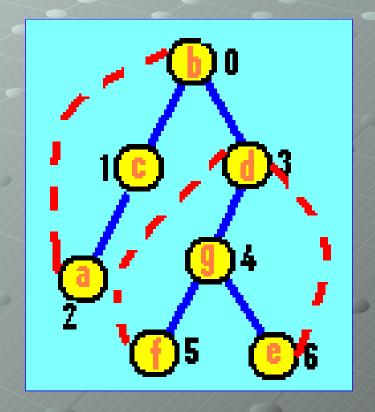
Si e=ab no es arista de T y df(a)< df(b), entonces a es ascendiente de b en el árbol T

Vértices corte en un grafo conexo



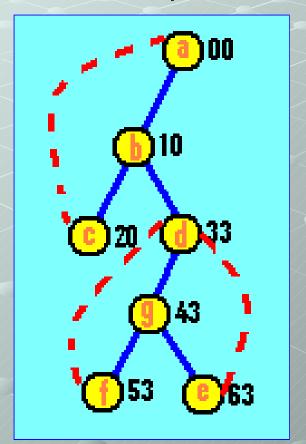
• Sea T árbol de un recorrido en profundidad de G conexo y r la raíz del árbol. Si r es vértice-corte entonces r tiene más de un hijo en T.

 b es vértice-corte si existen dos vértices c, d tales que b está en todos los caminos de c a d.



Sea T árbol de recorrido en profundidad de G conexo, v vértice no raíz del árbol.

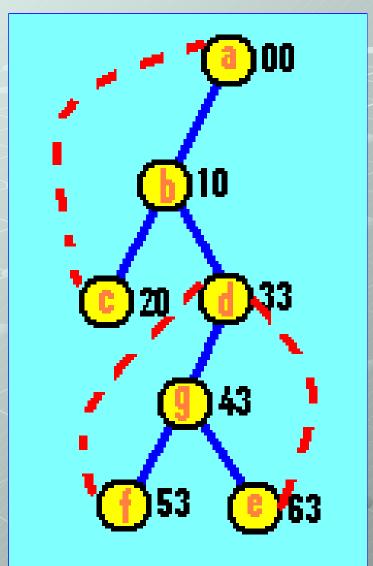
Si v es vértice-corte entonces v tiene un hijo z tal que ningún descendiente de z se une a un antecesor de v por una arista que no está en T.



Añadiendo otra etiqueta I(z), tenemos que:

/(z)=min{df(t) para todo vértice t de T
que se alcanza desde z con un
camino z--t que termina con una
arista no de T}

Aristas puente en un grafo conexo

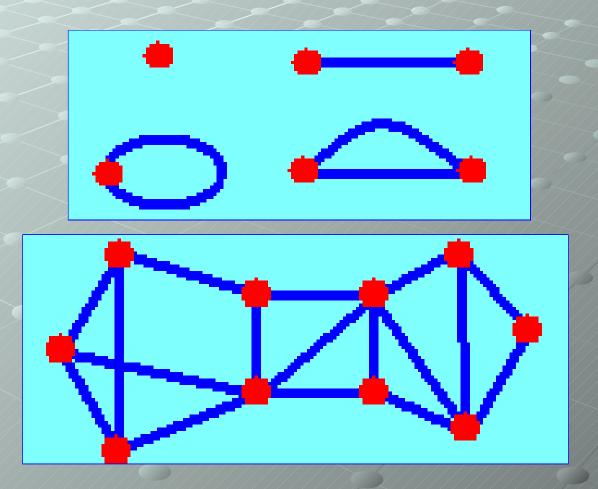


Sea T árbol de un recorrido en profundidad de G conexo, **uv** arista de G con df(u)<df(v).

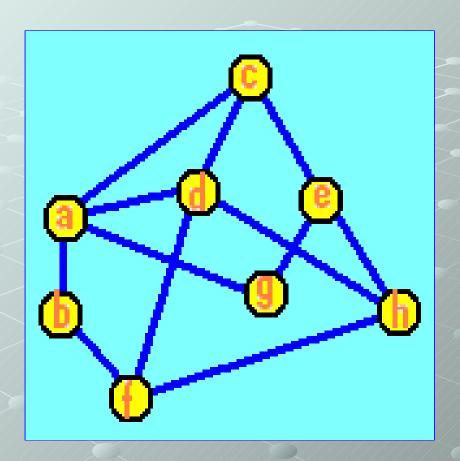
Si **uv** es puente entonces **uv** \in T y I(v)>df(u).

Bloques

Sea G un grafo. Un bloque de G es un subgrafo conexo maximal tal que ninguno de sus vértices es vértice-corte.



Recorrido en anchura



Frente: a

Frente: b,g,d,c

Frente: g,d,c,f

Frente: d,c,f,e

Frente: c,f,e,h

Frente: f,e,h

Frente: e,h

Frente: h