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The phenomenon of synchronization occurring in a locally coupled map lattice subject to an external drive
is compared to the synchronization process in an autonomous coupled map system with similar local couplings
plus a global interaction. It is shown that chaotic synchronized states in both systems are equivalent, but the
collective states arising after the chaotic synchronized state becomes unstable can be different in these two
systems. It is found that the external drive induces chaotic synchronization as well as synchronization of
unstable periodic orbits of the local dynamics in the driven lattice. On the other hand, the addition of a global
interaction in the autonomous system allows for chaotic synchronization which is not possible in a large
coupled map system possessing only local couplings.
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Coupled map lattices have provided fruitful theoretical
and computationally efficient models for investigating a va-
riety of processes in spatially distributed dynamical systems,
such as synchronization, pattern formation, phase separation,
turbulence, nontrivial collective behavior, etc.f1g. Recently,
the phenomena of synchronization and pattern formation in-
duced by external forcing on spatiotemporal dynamical sys-
tems, such as chemical reactionsf2–4g, have been the focus
of much attention. There has also been interest in experimen-
tal investigations of spontaneous pattern formation and emer-
gence of synchronization in spatially extended systems of
interacting dynamical elements, such as one-dimensional ar-
rays of electrochemical oscillatorsf5g, chemical and hydro-
dynamical systems with global couplingf6,7g and popula-
tions of chaotic electrochemical cells having both local and
global interactionsf8g. The relationship between forced spa-
tiotemporal systems and autonomous dynamical systems
possessing global interactions has recently been explored in
the framework of coupled map latticesf9g. In this paper, we
investigate the emergence of synchronization in forced spa-
tiotemporal systems by using a model of a coupled chaotic
map lattice subjected to an external drive. We show that the
chaotic synchronized state in this lattice is analogous to the
chaotic synchronized state emerging in an autonomous
coupled map system having similar local couplings plus a
global interaction, but other collective states occur differ-
ently in these two systems. We also show that the addition of
a global interaction in the autonomous system allows for
chaotic synchronization that is not possible in a large
coupled map system possessing only local couplings.

As a model of a driven spatiotemporal system, we con-
sider a one-dimensional coupled map lattice subjected to a
uniform external drivef9g,

xt+1
i = s1 − e2dfsxt
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2
fsfsxt
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idg + e2Ft,

s1d

wherext
i is the state of elementisi =1,2,… ,Nd at discrete

time t ,N is the number of oscillators,fsxd describes the local

chaotic dynamics;e1 measures the local diffusive coupling,
e2 expresses the coupling to the external forcing, andFt is
the uniform driving term which can be any function of time.

The dynamics of the driven lattice can be compared with
that of an autonomous spatiotemporal system, described by
the following coupled map system possessing both local and
global interactions:
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wherefsxd is the same local map as in Eq.s1d; e1 ande2 are
the local and global coupling parameters, respectively; and
the global interaction is provided by the mean field of the
system. Periodic boundary conditions are assumed in both
systems Eqs.s1d and s2d.

When the autonomous coupled map system in Eq.s2d
reaches a synchronized state at some parameter values, the
evolution of its mean field is identical to the dynamics of any
local map. Thus for the same set of parameters, the driven
lattice Eq.s1d subjected to a forcingFt equal to the local map
should exhibit a synchronized state similar to that of the
associated autonomous coupled map system Eq.s2d.

The driven lattice Eq.s1d can be expressed in vector form
as

xt+1 = Fs1 − e2dI +
e1

2
LGfsxtd + e2Ft, s3d

where the vector components arefxtgi =xt
i , ffsxtdgi = fsxt

id, and
fFtgi =Ft; I is the N3N identity matrix, andL is the N3N
matrix expressing the diffusive coupling among the ele-
ments, with components given byLi i±1=1, Lii =−2, andLij

=0, otherwise.
The driven lattice may reach different asymptotic spa-

tiotemporal patterns, ordered, synchronized, or turbulent, de-
pending on the characteristics of the drive functionFt, and
on the initial conditionsf9g. Here we consider synchronized
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states of the lattice induced by a periodic or a chaotic drive.
A synchronized state at timet is defined by the condition
xt

i =xt∀ i. In a synchronized state, the driven system must
satisfy

xt+1 = s1 − e2dfsxtd + e2Ft. s4d

The linear stability analysis of the synchronized state in
the driven system leads to the condition

US1 − e2 +
e1

2
n jDelU , 1, s5d

wheren j =−4 sin2sp j /Nd , j =0,1,2,… ,N−1, is the set of ei-
genvalues of the coupling matrixL, with N/2 distinct eigen-
values and each being doubly degeneratef10g; and l
=limT→`s1/Tdot=0

T−1lnuf8sxtdu is the Lyapunov exponent of the
local map. Thus the range of the parametere2 for which a
synchronized state is stable corresponds to

1 − 2e1sin2Sp j

N
D − e−l , e2 , 1 − 2e1sin2Sp j

N
D + e−l.

s6d

In particular, in a synchronized periodic state all the ele-
ments follow the same cyclic sequence of values. Consider,
for example, an orbit of periodp of the local map, defined by
f spdsx̄nd= x̄n, wherehx̄1, x̄2,… , x̄pj are the set of consecutive
points belonging to the orbit, satisfyingfsx̄nd= x̄n+1, fsx̄pd
= x̄1. This periodic orbit is unstable ifel=pn=1

p uf8sx̄ndu.1. If
an unstable periodic orbit gets synchronized in the driven
lattice, thenxt+1= x̄n+1 andxt= x̄n, and Eqs.s4d yield the so-
lution Ft= x̄n+1. Thus, if the external drive follows a periodic
unstable orbit of the local map, i.e.,Ft=hx̄1, x̄2,… , x̄pj, then
it is possible to synchronize the entire lattice on that orbit.

As an application, we shall consider a logarithmic map
f11g fsxd=b−lnuxu , xP s−` ,`d, as local chaotic dynamics in
both Eqs.s1d and s2d. This map exhibits robust chaos, with
no periodic windows and no separated chaotic bands, in the
parameter intervalbP f−1,1g.

In order to characterize the collective states in both sys-
tems, we calculate the mean field

ht =
1

N
o
i=1

N

fsxt
id. s7d

Figures 1sad–1scd show bifurcation diagrams ofht as a func-
tion of the coupling drive parametere2 for lattices driven
with different forms ofFt. For each value ofe2, ht was cal-
culated at each time step during a run starting from random
initial conditions on the local maps, uniformly distributed on
the interval f−8,4g, after discarding the transients. Figure
1sad shows the bifurcation diagram ofht vs e2 for a lattice
driven with a constant termFt= x̄1=−0.855, wherex̄1= fsx̄1d
is the unstable fixed point of the local logarithmic map for
b=−0.7. In the region labeled by PSsperiodic synchroniza-
tiond, ht becomes equal tox̄1, indicating that the elements in
the lattice are synchronized at this stationary value. The
range of e2 for which synchronization is observed corre-
sponds to the range predicted by the stability condition Eq.
s6d, for the unstable fixed point off with p=1. Outside the

region of stationary synchronization, other types of collec-
tive behaviors can be observed in the bifurcation diagram of
Fig. 1sad. In the left region labeled by CPBscollective peri-
odic behaviord, the mean field of the system driven with
constantFt= x̄1 experiences a collective period-2 motion, al-
though the local elements are chaotic and desynchronized. A
collective fixed point occurs on the right CPB region. There
is also a region, labeled byT sturbulenced, whereht follows
a normal statistical behavior around a mean value with fluc-
tuations reflecting the averaging ofN completely desynchro-
nized chaotic elementsf12g.

FIG. 1. Bifurcation diagrams ofht vs e2 for the driven lattice,
Eq. s1d, with N=104, e1=0.5, b=−0.7. Labels indicate PSsperiodic
synchronizationd, CPB scollective periodic behaviord, CS schaotic
synchronizationd, CCB scollective chaotic bandsd, and T sturbu-
lenced. Ft= sad hx̄1=−0.855j; sbd hx̄1=0.18,x̄2=−2.44j, and scd
−0.7+lnuxtu.
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Figure 1sbd showsht vs e2 for the lattice driven periodi-
cally with Ft=hx̄1, x̄2j, where x̄1=0.18, x̄2=−2.44 are the
points of the unstable period-2 orbit of the local logarithmic
map forb=−0.7. In the region labeled by PS, the mean field
coincides with this unstable periodic orbit, indicating that the
lattice is synchronized on this orbit. This range ofe2 is pre-
dicted by condition Eq.s6d for the unstable periodic orbit of
f with p=2 for the parameter valueb=−0.7. Periodic collec-
tive behaviors with period 2 and period 4 inht arise in the
regions labeled by CPB. Figure 1scd corresponds to a chaotic
driving, with Ft=−0.7+lnuxtu. Chaotic synchronization of the
system occurs in the region labeled by CS and it is also
predicted by Eq.s6d. In this CS region,ht=Ft=−0.7+lnuxtu
=xt

i ∀ i. After crossing the boundaries of the CS region, the
collective states described byht take the form of chaotic
bands. These states are labeled CCBscollective chaotic
bandsd and they consist of the motion of chaotic elements
that maintain some coherence.

Synchronized states,xt
i =xt∀ i, can also emerge in the au-

tonomous coupled map system Eq.s2d. In order to study the
stability of these states, we express Eq.s2d in vector form as

xt+1 = Fs1 − e2dI +
e1

2
L +

e2

N
GGfsxtd, s8d

where the local connectivity matrixL was defined in Eq.s3d
andG is theN3N global connectivity matrix having all its
components equal to 1.

The linear stability analysis of synchronized states in the
autonomous system yields

US1 − e2 +
e1

2
n j +

e2

N
g jDelU , 1, j = 0,1,…,N − 1, s9d

wheren j are the eigenvalues of the local coupling matrixL
defined above, andg j =d0jN correspond to the set of eigen-
values of G, with the zero eigenvalue havingsN−1d-fold
degeneracy. The range ofe2 for which synchronization takes
place is

1 − 2e1sin2Sp j

N
D − e−l , e2 , 1 − 2e1sin2Sp j

N
D + e−l,

s10d

which is the same condition for stability of synchronized
states in the driven lattice, Eq.s6d. However, the unstable
periodic orbits of the local mapf cannot be synchronized in
the autonomous system because they correspond to unstable
synchronized states in this system.

The eigenvector corresponding toj =0 is homogeneous
for both matricesL andG. Thus perturbations ofxt along this
eigenvector do not destroy the coherence, and the stability
condition associated withj =0 is irrelevant for a synchro-
nized state. The other eigenvalues corresponding toj Þ0 are
not homogeneous. Thus, the condition Eq.s6d with j Þ0 de-
fine regions in the space of parameters where all the stable
synchronized states can be observed.

Figure 2 shows the boundary curves given by Eq.s9d on
the parameter planese2,e1d, in the limit of largeN. The label
CS indicates where a chaotic synchronized state is stable in

the autonomous system. After crossing the stability bound-
aries of the CS state, the autonomous system exhibits spa-
tiotemporal patterns corresponding to short wavesSWd and
long wavesLWd modes, as indicated in Fig. 2. Note that the
stability condition Eq.s9d does not hold fore2=0 and large
N; i.e., chaotic synchronization for large system sizeN can-
not take place in coupled map lattices possessing only local
couplings, which is a well known factf13g. Thus, the addi-
tion of a global interaction allows the emergence of chaotic
synchronization in a large locally coupled system. Similarly,
an external uniform driving can be used to induce chaotic
synchronization in a locally coupled map network.

Figure 3sad shows the bifurcation diagram ofht for the
autonomous system, Eq.s2d, as a function of the coupling
parametere2. In contrast to the behavior displayed by the
driven lattice, no regions of synchronization of unstable pe-
riodic orbits of the local dynamics in the space of parameters
are observed in the autonomous system, as expected. The
range of chaotic synchronization corresponds to the same
range ofe2 for chaotic synchronization in Fig. 1scd for the
driven lattice. Note, however, that beyond the region CS in
Fig. 3sad, there are collective states emerging in the autono-
mous system, such as CPB andT, which do not appear in the
corresponding diagram of the driven lattice, Fig. 1scd. By
varying the coupling strengths, various spatial patterns can
be realized in the autonomous system. These patterns corre-
spond to short and to long wave modes and can be regarded
as generalized Turing patterns that emerge when a global
synchronized state becomes unstablef14g. Figure 3sbd shows
the bifurcation diagram ofht vs e1, with e2 fixed.

The collective states observed in the bifurcation diagrams
of Fig. 3, as well as those in Fig. 1, have been checked for
system-size effects. When the lattice sizeN is increased, the
segments in the CPB regions shrink, but the amplitudes of
the collective periodic motions do not decrease, indicating
that the global periodic attractors become better defined in
the large system limit. As a consequence, the variance of the

FIG. 2. Stability boundaries of the chaotic synchronized state
CS of the autonomous system Eq.s2d on the parameter plane
se2,e1d, with N=104, b=−0.7. Regions corresponding to short
wave sSWd and long wavesLWd patterns emerging from the CS
state are indicated.
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fluctuations ofht itself does not decrease asN−1 with increas-
ing N, but rather it saturates at some constant value related to

the amplitude of the collective periodic motion. These states
of ordered evolution in macroscopic quantities such asht,
arising from local chaos in spatiotemporal systems, have
been called nontrivial collective behaviorf15g. The states of
collective chaotic bands are also manifestations of nontrivial
collective behavior, since the variance ofht for those states
neither follows a regular statistical behavior. In contrast, the
variance of the mean field in the turbulent statessTd appears
to decrease asN−1 with increasingN, obeying normal statis-
tical behavior.

In summary, we have studied the analogy between the
chaotic synchronized states emerging in forced spatiotempo-
ral systems and in autonomous dynamical systems possess-
ing global interactions in the context of coupled map lattices.
By using a model of a one-dimensional coupled map lattice
subjected to a uniform external drive, we have shown that
both synchronization of unstable periodic orbits of the local
maps and chaotic synchronized states can be induced in the
driven lattice. The external drive acts as a control mechanism
for stabilizing unstable periodic orbits of the local maps. We
showed that the synchronization behavior of the driven lat-
tice can be compared, under some circumstances, with that
of an autonomous coupled map system possessing a similar
local coupling plus an additional global interaction that acts
as a global feedback. It was found that the chaotic synchro-
nized states in both systems are analogous; however, the au-
tonomous system does not exhibit synchronization of un-
stable local periodic orbits. The collective states arising
when the chaotic synchronized state becomes unstable are, in
general, different in these systems. Although we have con-
sidered one-dimensional diffusive couplings, expressed by
the matrixL, the analogy between a uniform external drive
and a global interaction can also be applied to other networks
of coupled maps whose connectivity may be represented in
matrix form.
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