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Synchronization in driven versus autonomous coupled chaotic maps
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The phenomenon of synchronization occurring in a locally coupled map lattice subject to an external drive
is compared to the synchronization process in an autonomous coupled map system with similar local couplings
plus a global interaction. It is shown that chaotic synchronized states in both systems are equivalent, but the
collective states arising after the chaotic synchronized state becomes unstable can be different in these two
systems. It is found that the external drive induces chaotic synchronization as well as synchronization of
unstable periodic orbits of the local dynamics in the driven lattice. On the other hand, the addition of a global
interaction in the autonomous system allows for chaotic synchronization which is not possible in a large
coupled map system possessing only local couplings.
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Coupled map lattices have provided fruitful theoretical chaotic dynamicsg; measures the local diffusive coupling,
and computationally efficient models for investigating a va-e, expresses the coupling to the external forcing, &nis
riety of processes in spatially distributed dynamical systemsthe uniform driving term which can be any function of time.
such as synchronization, pattern formation, phase separation, The dynamics of the driven lattice can be compared with
turbulence, nontrivial collective behavior, efd]. Recently, that of an autonomous spatiotemporal system, described by
the phenomena of synchronization and pattern formation inthe following coupled map system possessing both local and
duced by external forcing on spatiotemporal dynamical sysglobal interactions:
tems, such as chemical reactidi2zs-4], have been the focus
of much attention. There has also been interest in experimen-  xI = (1 - ¢,)f(x) + ﬂ[(f(xitﬂ) + (7Y = 2f(x)]
tal investigations of spontaneous pattern formation and emer- 2
gence of synchronization in spatially extended systems of N
interacting dynamical elements, such as one-dimensional ar- + 22 f(x), 2)
rays of electrochemical oscillatof§], chemical and hydro- Niz1
dynamical systems with global couplii§,7] and popula- . . )
tiz)/ns of chagtic electrochgmical cellg hgving botr? I(?cal anderef(x) is the same local map as in EQ); €; ande, are
global interaction$8]. The relationship between forced spa- the local a’.‘d glob_al cpuplmg_ parameters, respepnvely; and
tiotemporal systems and autonomous dynamical systemtg'e global Interaction s prowded_ .by the mean field Qf the
possessing global interactions has recently been explored fyStem. Periodic boundary conditions are assumed in both
the framework of coupled map latticEg]. In this paper, we systems Eqs(1) and(2). .
investigate the emergence of synchronization in forced spa- When the autonqmous coupled map system in €.
tiotemporal systems by using a model of a coupled chaoti&eaCh?S a s_ynchronlz_ed s_ta_te at_some parameter_ values, the
map lattice subjected to an external drive. We show that th volution of its mean field is identical to the dynamics of any
chaotic synchronized state in this lattice is analogous to th C‘."ll map. Thus.for the same set of parameters, the driven
chaotic synchronized state emerging in an autonomou ttice Eq.(l_) gubjected to a_forcm&t equgl to the local map
coupled map system having similar local couplings plus ashoulq exhibit a synchronized state similar to that of the
global interaction, but other collective states occur differ-2SSOciated autonomous coupled map system(&q.
ently in these two systems. We also show that the addition of '€ driven lattice Eq(1) can be expressed in vector form
a global interaction in the autonomous system allows fo®S
chaotic synchronization that is not possible in a large €
coupled map system possessing only local couplings. Xp1= | (1 - &)l + St f(x) + &F, 3)

As a model of a driven spatiotemporal system, we con- . .
sider a one-dimensional coupled map lattice subjected to where the vector components &gl =x;, [f(x)];=f(x}), and

uniform external drive 9], [Fi=F; | is the NX N identity matrix, andL is the NX N
matrix expressing the diffusive coupling among the ele-
Xy = (1 - e)f(X) + ﬂ-[(f(xi[*'l) + (7Y = 2f(X) ] + &Fy, ments, with components given Hy;.,=1, L;j=-2, andL;
2 =0, otherwise.
(1) The driven lattice may reach different asymptotic spa-

. » . tiotemporal patterns, ordered, synchronized, or turbulent, de-
wherex, is the state of elemeriti=1,2,...,N) at discrete  pending on the characteristics of the drive functinand
timet,N is the number of oscillatord(x) describes the local on the initial conditiong9]. Here we consider synchronized
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states of the lattice induced by a periodic or a chaotic drive. ' ' ' ' T ™ ()
A synchronized state at timeis defined by the condition I R bs .
x=x0 i. In a synchronized state, the driven system must L A S .
satisfy ;’
X1 = (1 - &) (%) + F. @ M T
The linear stability analysis of the synchronized state in t_2 i : i
the driven system leads to the condition ;
€ -3} ]
‘(1—ez+§1vj>@ <1, (5)
wherey;=-4 sirf(wj/N), j=0,1,2,..,N-1, is the set of ei- =) tIJ 0!2 0!4 ofs ofs 1
genvalues of the coupling matrix with N/2 distinct eigen- €2
values and each being doubly degenergi€]; and A 1 T T T Y
=limy_..(1/T)24In|f'(x)] is the Lyapunov exponent of the
local map. Thus the range of the parametgfor which a 0 NL“C = S
synchronized state is stable corresponds to :
of of T L - - T
1—261S|n2(ﬁ> —eh<eg< 1—261S|n2<ﬁ) +e, hy :
-2 § " T _
6 i f
(6) W’l —
In particular, in a synchronized periodic state all the ele- sk y 4
ments follow the same cyclic sequence of values. Consider, \
for example, an orbit of period of the local map, defined by » , LNy .
fP(X) =X,, Where{X;,X,, ..., X,} are the set of consecutive -2 0 bz o 05 08 1
2

points belonging to the orbit, satisfyinf(x,)=Xn.1, f(X,)

=X,. This periodic orbit is unstable # =TIP_,|f’(x,)| > 1. If

an unstable periodic orbit gets synchronized in the driven

lattice, thenx,,;=X,.; and x;=x,, and Eqgs.4) yield the so-

lution F;=X..1. Thus, if the external drive follows a periodic

unstable orbit of the local map, i.€5={X;,X;,...,X,}, then

it is possible to synchronize the entire lattice on that orbit.
As an application, we shall consider a logarithmic map

[11] f(x)=b—In|x|, x e (==, ), as local chaotic dynamics in

both Egs.(1) and(2). This map exhibits robust chaos, with

no periodic windows and no separated chaotic bands, in the

parameter intervab e [-1,1]. i S .
In order to characterize the collective states in both sys- Ry E— PP ve—

tems, we calculate the mean field €9

h = 1% f( i) 7 FIG. 1. Bifurcation diagrams ofi; vs e, for the driven lattice,
N = Xp)- Eq. (1), with N=10%, €,=0.5,b=-0.7. Labels indicate P@eriodic
synchronizatiojy CPB (collective periodic behavigr CS (chaotic
Figures 1a)-1(c) show bifurcation diagrams df, as a func-  synchronizatiopy CCB (collective chaotic bandsand T (turbu-
tion of the coupling drive parametes, for lattices driven lence. Fi=(a) {x,=-0.858; (b) {x,=0.18x,=-2.44, and (0)
with different forms ofF,. For each value oé,, h, was cal- ~ —0.7+Inx.
culated at each time step during a run starting from random
initial conditions on the local maps, uniformly distributed on region of stationary synchronization, other types of collec-
the interval[-8,4], after discarding the transients. Figure tive behaviors can be observed in the bifurcation diagram of
1(a) shows the bifurcation diagram &k vs e, for a lattice  Fig. 1(@). In the left region labeled by CPRollective peri-
driven with a constant terr,=x;=-0.855, wherex;=f(x;)  odic behavioy, the mean field of the system driven with
is the unstable fixed point of the local logarithmic map for constant=,=x, experiences a collective period-2 motion, al-
b=-0.7. In the region labeled by P@eriodic synchroniza- though the local elements are chaotic and desynchronized. A
tion), h, becomes equal f®;, indicating that the elements in collective fixed point occurs on the right CPB region. There
the lattice are synchronized at this stationary value. Thds also a region, labeled By (turbulence, whereh, follows
range of e, for which synchronization is observed corre- a normal statistical behavior around a mean value with fluc-
sponds to the range predicted by the stability condition Eqtuations reflecting the averaging Nfcompletely desynchro-
(6), for the unstable fixed point df with p=1. Outside the nized chaotic elemen{d2].
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Figure Xb) showsh; vs e, for the lattice driven periodi- T T T
cally with F,={x;,X,}, where x;=0.18,x,=-2.44 are the 0.8
points of the unstable period-2 orbit of the local logarithmic
map forb=-0.7. In the region labeled by PS, the mean field
coincides with this unstable periodic orbit, indicating that the
lattice is synchronized on this orbit. This rangeegfis pre-
dicted by condition Eq(6) for the unstable periodic orbit of ¢ 0
f with p=2 for the parameter value=-0.7. Periodic collec-
tive behaviors with period 2 and period 4 lm arise in the
regions labeled by CPB. Figuréc) corresponds to a chaotic 0.4 [

0.4 -

\_

driving, with F;=-0.7 +Ir|x/. Chaotic synchronization of the W
\

2

7

system occurs in the region labeled by CS and it is also

predicted by Eq(6). In this CS regionh,=F=-0.7 +Ir|x|

=x0 i. After crossing the boundaries of the CS region, the

collective states described Hy take the form of chaotic

bands. These states are labeled C@Bllective chaotic €2

bandg and they consist of the motion of chaotic elements

that maintain some coherence. FIG. 2. Stability boundaries of the chaotic synchronized state
Synchronized stateg,=x i, can also emerge in the au- CS of the autonomous system E?) on the parameter plane

tonomous coupled map system E). In order to study the (€2-€0), With N=10%, b=-0.7. Regions corresponding to short

stability of these states, we express E2).in vector form as ~ Wave (SW) and long wave(LW) patterns emerging from the CS
state are indicated.

1 1 1
0 0.5 1 1.5

Xp1 = {(1 -e)l + 94 QG]f(xt), (8) the autonomous system. After crossing the stability bound-
2 N aries of the CS state, the autonomous system exhibits spa-
where the local connectivity matrix was defined in Eq@3)  tiotemporal patterns corresponding to short w&S®) and
andG is the N N global connectivity matrix having all its 10N9 wave(LW) modes, as indicated in Fig. 2. Note that the

components equal to 1. stability condition Eq(9) does not hold fore,=0 and large
The linear stability analysis of synchronized states in thd\: I-€-, chaotic synchronization for large system sizean-
autonomous system yields not take place in coupled map lattices possessing only local

couplings, which is a well known fa¢tL3]. Thus, the addi-
tion of a global interaction allows the emergence of chaotic
synchronization in a large locally coupled system. Similarly,
an external uniform driving can be used to induce chaotic
wherev; are the eigenvalues of the local coupling matrix  synchronization in a locally coupled map network.

defined above, ang;=dy;N correspond to the set of eigen-  Figure 3a) shows the bifurcation diagram & for the
values of G, with the zero eigenvalue havindN—1)-fold  autonomous system, E), as a function of the coupling
degeneracy. The range ef for which synchronization takes parametere,. In contrast to the behavior displayed by the

(1—52+%Vj+%yj>@‘ <1, j=0,1,..,N-1, (9)

place is driven lattice, no regions of synchronization of unstable pe-
_ ) riodic orbits of the local dynamics in the space of parameters

1- Zelsinz(ﬂ> —et< e <1- Zelsin2<ﬂ) +e are observed in the autonomous system, as expected. The

N range of chaotic synchronization corresponds to the same

(10) range ofe, for chaotic synchronization in Fig.(d for the
driven lattice. Note, however, that beyond the region CS in
which is the same condition for stability of synchronized Fig. 3(a), there are collective states emerging in the autono-
states in the driven lattice, E@6). However, the unstable mous system, such as CPB ahdvhich do not appear in the
periodic orbits of the local map cannot be synchronized in corresponding diagram of the driven lattice, Figc)1 By
the autonomous system because they correspond to unstaklgrying the coupling strengths, various spatial patterns can
synchronized states in this system. be realized in the autonomous system. These patterns corre-
The eigenvector corresponding &0 is homogeneous spond to short and to long wave modes and can be regarded
for both matriced. andG. Thus perturbations of; along this  as generalized Turing patterns that emerge when a global
eigenvector do not destroy the coherence, and the stabilityynchronized state becomes unstdtig. Figure 3b) shows
condition associated with=0 is irrelevant for a synchro- the bifurcation diagram of, vs €;, with e, fixed.
nized state. The other eigenvalues correspondirjg#0 are The collective states observed in the bifurcation diagrams
not homogeneous. Thus, the condition E8).with j#0 de-  of Fig. 3, as well as those in Fig. 1, have been checked for
fine regions in the space of parameters where all the stablg/stem-size effects. When the lattice shtés increased, the
synchronized states can be observed. segments in the CPB regions shrink, but the amplitudes of
Figure 2 shows the boundary curves given by E.on  the collective periodic motions do not decrease, indicating
the parameter plang;, €;), in the limit of largeN. The label  that the global periodic attractors become better defined in
CS indicates where a chaotic synchronized state is stable the large system limit. As a consequence, the variance of the
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FIG. 3. Bifurcation diagrams dfi, for the autonomous system,
for b=-0.7,N=10% (a) h; vs &, with fixed €,=0.5. (b) h; vs €,
with fixed e,=0.5. Labels are defined in Fig. 1.

fluctuations o, itself does not decrease Bis* with increas-
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the amplitude of the collective periodic motion. These states
of ordered evolution in macroscopic quantities suchhas
arising from local chaos in spatiotemporal systems, have
been called nontrivial collective behavi5]. The states of
collective chaotic bands are also manifestations of nontrivial
collective behavior, since the variance hpffor those states
neither follows a regular statistical behavior. In contrast, the
variance of the mean field in the turbulent staf€sappears

to decrease ad™! with increasingN, obeying normal statis-
tical behavior.

In summary, we have studied the analogy between the
chaotic synchronized states emerging in forced spatiotempo-
ral systems and in autonomous dynamical systems possess-
ing global interactions in the context of coupled map lattices.
By using a model of a one-dimensional coupled map lattice
subjected to a uniform external drive, we have shown that
both synchronization of unstable periodic orbits of the local
maps and chaotic synchronized states can be induced in the
driven lattice. The external drive acts as a control mechanism
for stabilizing unstable periodic orbits of the local maps. We
showed that the synchronization behavior of the driven lat-
tice can be compared, under some circumstances, with that
of an autonomous coupled map system possessing a similar
local coupling plus an additional global interaction that acts
as a global feedback. It was found that the chaotic synchro-
nized states in both systems are analogous; however, the au-
tonomous system does not exhibit synchronization of un-
stable local periodic orbits. The collective states arising
when the chaotic synchronized state becomes unstable are, in
general, different in these systems. Although we have con-
sidered one-dimensional diffusive couplings, expressed by
the matrixL, the analogy between a uniform external drive
and a global interaction can also be applied to other networks
of coupled maps whose connectivity may be represented in
matrix form.
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