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We investigate the relationship between the emergence of chaos synchronization and the informa-
tion flow in dynamical systems possessing homogeneous or heterogeneous global interactions whose
origin can be external (driven systems) or internal (autonomous systems). By employing general
models of coupled chaotic maps for such systems, we show that the presence of a homogeneous
global field, either external or internal, for all times is not indispensable for achieving complete or
generalized synchronization in a system of chaotic elements. Complete synchronization can also ap-
pear with heterogeneous global fields; it does not requires the simultaneous sharing of the field by all
the elements in a system. We use the normalized mutual information and the information transfer
between global and local variables to characterize complete and generalized synchronization. We
show that these information measures can characterize both types of synchronized states and also
allow to discern the origin of a global interaction field. A synchronization state emerges when a
sufficient amount of information provided by a field is shared by all the elements in the system, on
the average over long times. Thus, the maximum value of the top-down information transfer can be
used as a predictor of synchronization in a system, as a parameter is varied.

PACS numbers: 89.75.Fb; 87.23.Ge; 05.50.+q

I. INTRODUCTION

Global interactions in a system occur when all its ele-
ments are subject to a common influence or field. Global
interactions appear naturally in the description of many
physical, biological and social systems, such as coupled
oscillators [1, 2], Josephson junction arrays [3], charge
density waves [4], multimode lasers [5], parallel electric
circuits, neural dynamics, ecological systems, evolution
models [6], economic exchange [7], social networks [8],
mass media models [9], cross-cultural interactions [10],
etc. A global interaction field may consist of an exter-
nal environment acting on the elements, as in a driven
dynamical system; or it may originate from the inter-
actions between the elements, in which case, we talk of
autonomous dynamical systems. In many cases, global
interaction fields coexist with local or short-range inter-
actions.

Although systems with global interactions possess a
simple topological connectivity structure –a fully con-
nected network–, they can exhibit a variety of collec-
tive behaviors, such as chaos synchronization, dynamical
clusters, nontrivial collective behavior, chaotic itineracy
[6, 11], quorum sensing [12], etc. These behaviors have
been studied in models of globally coupled maps [13] and
have been experimentally investigated in globally coupled
oscillators in chemical, physical and biological systems
[14–17].

In particular, chaos synchronization is a fundamental
phenomenon in dynamical systems [18, 19]. Its investi-
gation has provided insights into many natural processes
and motivation for practical applications such as secure
communications and control of nonlinear systems [20–22].
Complete synchronization in a system of dynamical ele-

ments subject to a global interaction field, either external
or autonomous, occurs when the state variables of all the
elements and the global field converge to a single orbit
in phase space. Generalized chaos synchronization, orig-
inally discovered in driven chaotic systems, arises when
all the state variables of the elements in the system get
synchronized into an orbit that is different from that of
the drive [23, 24]. The concept of generalized synchro-
nization of chaos has also been extended to the context of
autonomous systems [25]. This means that the chaotic
state variables in a dynamical system can synchronize
to each other but not to a coupling function containing
information from those variables.

The occurrence of both forms of chaos synchroniza-
tion in driven and in autonomous systems with global
interactions suggests that the nature, either external or
endogenous, of the global field acting on the elements in
a system is irrelevant. At the local level, each element in
the system is subject to a field that eventually induces
some form of synchronization between that field and the
element. In general, the local dynamics in systems with
global interactions can be seen as a single drive-response
system [11, 26]. In particular, if the time evolution of an
external global field acting on a system is identical to that
of an autonomous global field acting on a replica system,
the corresponding local drive-response dynamics in both
systems should be indistinguishable, and therefore the
corresponding synchronized states are equivalent; i. e.,
they occur for the same parameter values in both systems
[27].

In many systems it is important not only to detect syn-
chronized or other collective states, but also to under-
stand the relationships between global and local scales
that lead to such behaviors. For example, it has re-
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cently been argued that top-down causation –where in-
formation flows from higher levels to lower levels in com-
plex systems– may be a major contributor to evolution-
ary transitions and to the emergence of behaviors in liv-
ing systems [28], and synchronization in neural systems
has been described as a top-down information processing
driven by a stimulus [29].
The above results suggest that the emergence of collec-

tive behaviors, such as a synchronized state, in a system
is associated with the reception by its elements of some
amount of information provided by a source, either ex-
ternal or endogenous to the system. In this article we
investigate the relationship between information flow be-
tween the global and local variables, and the emergence
of complete and generalized synchronization of chaos in
dynamical networks with global interactions of differ-
ent types. We employ information measures [30, 31]
that have been widely applied to quantify drive-response
causal relationships between subsystems and interdepen-
dences between data sets in many fields of science, includ-
ing linguistics [32], electroencephalographic signals [33],
neuroscience [34], communication systems [35], dynam-
ical systems [36], and climate networks [37]. We show
that these information measures can characterize com-
plete and generalized synchronized states and also allow
us to discern the origin, either external or endogenous,
of a global interaction field. A given synchronization
state emerges when a sufficient amount of the informa-
tion transmitted by a field is shared by all the elements
in the system, on the average over long times. Thus, the
maximum value of the top-down information transfer can
be employed as a predictor of synchronization as a pa-
rameter in the system, such as the coupling strength to
the field, is varied.
In Sec. II we present a general coupled map model for

systems with external or endogenous global interactions.
and define the quantities to characterize synchronized
states and information flow in such systems. Homoge-
neous global interaction fields, which may act intermit-
tently, are considered in Sec. III. We extend the concept
of a global field to include heterogeneous global interac-
tions in Sec. IV. Section V contains the conclusions of
this work.

II. GLOBAL INTERACTION FIELDS

We describe a global interaction in a system as a field
that can influence all the elements in the system. As a
simple model of a dynamical system subject to a global
interaction, we consider a system of N coupled maps of
the form

xi
t+1 = w(xi

t, yt)

yt+1 = φ(yt, x
j
t ),

(1)

where xi
t (i = 1, 2, . . . , N) represents the state variable of

the ith map in the system at discrete time t, yt is a global
interaction field that can affect each map at time t, and

j ∈ Q where Q is a subset of elements in the system.
Equation (1) describes a system of elements interacting
with a common dynamical environment that can receive
feedback from the system. For simplicity, we shall focus
on the presence of global interactions and will not include
local interactions.
An external global field yt possesses its own dynamics,

independent from the dynamics of the elements, given by

φ(yt, x
j
t ) = g(yt). (2)

On the other hand, an internal global field yt can be
represented by

φ(yt, x
j
t ) = h(xj

t | j ∈ Qt), (3)

where h is a function of the states of a given subset Qt of
elements in the system at time t. The coupling function
h may represent a constraint or a conservation law on the
system.

p

g(yt)

xit

xit

p

(a) (b)

xit

g(yt)

(c) (d)

xit

ht(x
j
t : j ∈ Qt)

ht(x
j
t : j ∈ Qt)

FIG. 1. Top panels: homogeneous global interactions. (a)
External field g(yt) acting with probability p on all elements.
(b) Internal field h(xj

t | j ∈ Qt) acting with probability p on all
elements. Bottom panels: heterogeneous global interactions.
(c) External field g(yt) acting on a fraction p of elements
chosen at random at every time. (d) Internal field h(xj

t | j ∈
Qt) acting on a fraction p of elements chosen at random at
every time.

We shall consider the coupling of the maps to the
global interaction field in the diffusive form

w(xi
t, yt) = (1 − ǫ)f(xi

t) + ǫφ(yt, x
j
t ), (4)

where f describes the local dynamics of the maps, and
the parameter ǫ is the strength of the coupling to the
global field. Since we are particularly interested in chaos
synchronization, we choose for the local dynamics the
logistic map f(xi

t) = 4xi
t(1 − xi

t), so that f(xi
t) is fully

chaotic for xi
t ∈ [0, 1]. In this paper, we consider both,

driven and autonomous systems, subject to global inter-
actions, whose schemes are illustrated in Fig. 1.
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A. Synchronization states

Synchronization in the system Eq. (1) at a time t cor-

responds to a state xi
t = xj

t , ∀ i, j. Thus, a synchronized
state can be described by the condition xi

t = x̄t, ∀ i,
where x̄t is the instantaneous mean field of the system,

x̄t =
1

N

N
∑

i=1

xi
t . (5)

To characterize the occurrence of synchronization, we
shall consider the asymptotic time-average 〈σ〉 (after dis-
carding a number of transients) of the instantaneous
standard deviations σt of the distribution of state vari-
ables xi

t, defined as

σt =

[

1

N

N
∑

i=1

(

xi
t − x̄t

)2

]1/2

. (6)

A synchronization state corresponds to 〈σ〉 = 0. In ad-
dition, we define the asymptotic time-average 〈δ〉 (after
discarding a number of transients) of the quantity

δt = |x̄t − yt|. (7)

Two forms of synchronization can take place in the sys-
tem Eq. (1) in relation to the global field yt: (i) complete

synchronization, given by the condition xi
t = x̄t = yt, i.e.,

all elements are synchronized to the field, and character-
ized by 〈σ〉 = 0 and 〈δ〉 = 0; and (ii) generalized synchro-

nization, corresponding to the condition xi
t = x̄t 6= yt,

i.e., all elements are synchronized to each other but not
the field, and described by 〈σ〉 = 0 and 〈δ〉 6= 0. It
has been shown that both types of synchronization can
occur in systems with global interactions, for either au-
tonomous or driven systems [25]. In this paper we shall
use the numerical criteria 〈σ〉 < 10−7 and 〈δ〉 < 10−7 for
characterizing the zero values of these quantities.
In order to characterize the information exchange be-

tween the global field and the local dynamics in the sys-
tem, we consider the following quantities:

(1) the normalized mutual information between two
variables yt and xt, based on Shanon’s mutual in-
formation [30],

My,x = −

∑

xt,yt
P (xt, yt) log

(

P (xt, yt)

P (xt)P (yt)

)

∑

xt
P (xt) logP (xt)

; (8)

(2) the information transfer from a variable yt to a vari-
able xt, defined as [31]

Ty,x =
∑

xt+1,xt,yt

P (xt+1, xt, yt) log

(

P (xt+1, xt, yt)P (xt)

P (xt, yt)P (xt+1, xt)

)

,

(9)

where P (xt) means the probability distribution of the
time series of the variable xt, P (xt, yt) is the joint prob-
ability distribution of xt and yt, and so on. The quantity
My,x measures the overlap of the information content
of the variables yt and xt; it represents how much the
uncertainty about xt decreases if yt is known. The quan-
tity Ty,x measures the degree of dependence of xt on the
variable yt; i.e., the information required to represent
the value xt+1 from the knowledge of yt. Note that the
information transfer is nonsymmetrical, i.e., Ty,x 6= Tx,y.
The normalized mutual informationMy,x is symmetrical,
i.e. My,x = Mx,y, and does not indicate the direction of
the flow of information between two interacting dynam-
ical variables, as Ty,x does. When the two variables are
synchronized, xt = yt. Then we obtain My,x = 1 and
Ty,x = 0.

III. HOMOGENEOUS GLOBAL

INTERACTIONS

We describe a homogeneous global interaction as a field
shared simultaneously by all the elements in a system.
Since, in general, the interaction with the field may not
occur for all times, we consider a coupled map system
subject to a homogeneous, intermittent, global interac-
tion of the form

∀i, xi
t+1 =

{

w(xi
t, yt), with probability p,

f(xi
t), with probability (1 − p).

(10)

Each map in the system Eq. (10) is subject to the
presence (or absence) of the same influence at any time.
Then, the occurrence of complete or generalized synchro-
nization between a local map and the global field yt im-
plies the same form of synchronization between the mean
field of the system x̄t and yt, regardless of the nature, ei-
ther external or endogenous, of the global field yt.
A system subject to a homogenous external field

[Fig. 1(a)], corresponds to

∀i, xi
t+1 =

{

(1− ǫ)f(xi
t) + ǫg(yt), with probability p

f(xi
t), with probability (1− p),

yt+1 = g(yt).
(11)

The auxiliary system approach introduced in Ref. [24]
implies that a driven map can synchronize on identical
orbits with another, identically driven map. The system
Eq. (11) can be regarded as one of multiple realizations
for different initial conditions of a single, intermittently
driven map. Thus, by extension, the elements in this
system should synchronize with the external field in the
same form as a single local map driven by that field does.
A complete synchronized state in the system Eq. (11)

is given by xi
t = x̄t = yt, ∀i, and it can occur when the

external field is equal to the local dynamics, g = f . If
g 6= f , generalized synchronization, characterized by the
condition xi

t = x̄t 6= yt, ∀ i, may also arise in this system.
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On the other hand, a system subject to an autonomous
homogeneous global field [Fig. 1(b)] can be described as

∀i, xi
t+1 =

{

(1− ǫ)f(xi
t) + ǫh(xj

t | j ∈ Qt),with probability p,

f(xi
t), with probability (1− p),

(12)
where Qt is a subset consisting of q ≤ N elements of the
system that may be chosen at random at each time t.
Each map receives the same input from the endogenous
global field yt = h at any t with probability p. Com-
plete synchronization in the system Eq. (12) occurs when
f(xi

t) = f(x̄t) = h; while generalized synchronization ap-
pears if f(xi

t) = f(x̄t) 6= h, ∀ i.

A. Complete synchronization

As examples of complete chaotic synchronization in
systems having homogeneous global interactions, we con-
sider the driven system Eq. (11) with g = f , and the
autonomous system Eq. (12) subject to a partial mean
field coupling function defined as

h(xj
t | j ∈ Qt) =

1

q

q
∑

j=1

f(xj
t ), (13)

where q ≤ N maps are randomly chosen at each time t.
For these systems, the condition 〈δ〉 = 0 implies 〈σ〉 = 0
and, therefore, complete synchronization.
Figure 2(a) shows the quantity 〈δ〉 as a function of the

coupling parameter ǫ, for both the homogeneous driven
system and the homogeneous autonomous system, with
fixed values of p and q/N . Complete synchronization for
both systems takes place at a critical value ǫc = 0.579,
for which 〈δ〉 < 10−7.
Figures 2(b) and 2(c) show, respectively, the nor-

malized mutual information Myt,xi
t
and the information

transfer Tyt,xi
t
between the homogeneous global field and

one map, averaged over 50 randomly chosen maps, for
both systems as functions of ǫ. These averaged quantities
give practically the same result as for just one randomly
chosen map. The results shown are also independent of q
for large enough system system size N . We observe that,
as the coupling strength ǫ increases, the global field and
the local variables become more correlated, and the nor-
malized mutual information for both systems increases
until Myt,xi

t
= 1 at the value ǫc. In the complete syn-

chronization region, ǫ ≥ ǫc, we find the constant values
Myt,xi

t
= 1 and Tyt,xi

t
= 0 for both systems, signaling

complete synchronization in each case. Once complete
chaos synchronization is established, the evolution of the
global field, regardless of its source, is identical to that
of the maps. Thus, the mutual or the transfer infor-
mation cannot distinguish between the driven and the
autonomous systems in a regime of complete synchro-
nization.
On the other hand, just before vanishing at the crit-

ical value ǫc, the information transfer for both systems
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FIG. 2. Complete chaos synchronization in systems with ho-
mogeneous global fields. (a) 〈δ〉 vs. ǫ, (b) mutual information
Myt,x

i
t
vs. ǫ, and (c) information transfer Tyt,x

i
t
vs. ǫ. On

each panel, the continuous line corresponds to the homoge-
neous driven system, Eq. (11) with g = f and the dashed
line corresponds to the homogeneous autonomous system,
Eqs. (12) and (13). Both information measures are calcu-
lated with 2 × 105 points in the time series, after discarding
transients, and averaged over 50 randomly chosen maps. The
number of states used to calculate the corresponding prob-
ability distributions is 100. The same conditions are used
in Figs. 3 and 5. Fixed parameters: p = 0.8, N = 104,
q/N = 0.4.

becomes maximum. This indicates that, as the critical
values of the parameters for the onset of complete chaos
synchronization are approached, the flow of information
from the global field to the local maps must be large.
Figure 2(c) shows that the maximum value of the infor-
mation transfer for the driven system is greater than the
corresponding maximum value for the autonomous sys-
tem. Thus, in the vicinity of parameter values for the
emergence of complete synchronization, an autonomous
global field needs to convey less information to the lo-
cal maps than an external driving field. This suggests
that the information transfer Tyt,xi

t
can serve as a pre-
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dictor of a state of complete synchronization in the pa-
rameter space of driven and autonomous systems with
homogenous global interactions. Moreover, this quantity
can distinguish between these two types of systems near
the onset of complete synchronization.

B. Generalized synchronization

If the functional form of the global field is different
from that of the local dynamics, generalized synchroniza-
tion may occur in a system subject to a homogeneous
global interaction. For example, consider an external
field in a driven system Eq. (11) such as

g(yt) =
µ

2
(1− |2yt − 1|) , (14)

with µ = 1.98 and yt ∈ [0, 1]. Then at synchronization in
the driven system Eqs. (11)-(14), we have xi

t = x̄t 6= yt.
Similarly, in an autonomous system, Eqs. (12), consider
a homogeneous global interaction different from a mean
field, such as the coupling function

h(xj
t | j ∈ Qt) =

µ

2



1−

∣

∣

∣

∣

∣

∣

2





1

q

q
∑

j=1

xj
t



− 1

∣

∣

∣

∣

∣

∣



 , (15)

with µ = 1.98, where q ≤ N elements are chosen at
random at each time t. Then, a synchronized state in
the autonomous system Eqs. (12)-(15) corresponds to
f(xi

t) = f(x̄t) 6= h. For the fields chosen above, the func-
tional form of the autonomous field in a synchronized
state is similar to that of the drive, h = g(x̄t). How-
ever, the time evolution of h at synchronization is not
necessarily identical to that of g(yt).
Figure 3(a) shows the quantity 〈σ〉 as a function of

the coupling parameter ǫ for both systems with homoge-
neous global interactions, the driven system with g given
by Eq. (14) and the autonomous system with h given by
Eq. (15). These systems get synchronized at different
values of ǫ for which 〈σ〉 < 10−7. The inset in Fig. 3(a)
shows that the quantity 〈δ〉 for both systems does not
vanish when ǫ is varied, indicating that the synchronized
state in both cases corresponds to generalized synchro-
nization.
Figure 3(b) shows Myt,xi

t
for both systems, as a func-

tion of ǫ. In contrast to the constant value Myt,xi
t
= 1

exhibited by the normalized mutual information for both
systems in a state of complete synchronization [Fig. 2(b)],
the behavior of Myt,xi

t
in the regime of generalized syn-

chronization is different for each system. The normalized
mutual information for the autonomous system in a gen-
eralized synchronized state reaches an almost constant
value, Myt,xi

t
= 0.695 < 1, since the time series of the

local maps and the coupling function h are not identi-
cal. For the driven system, Myt,xi

t
increases monotoni-

cally with increasing ǫ, but the values ofMyt,xi
t
are below

the value of this quantity for the autonomous system in
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M
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i
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FIG. 3. Generalized chaos synchronization in systems with
homogeneous global fields. (a) 〈σ〉 vs. ǫ (inset: 〈δ〉 vs. ǫ); (b)
Myt,x

i
t
vs. ǫ; and (c) Tyt,x

i
t
vs. ǫ. On each panel, the con-

tinuous line corresponds to a homogeneously driven system
Eq. (11) with g given in Eq. (14) and the dashed line cor-
responds to the homogeneous autonomous system Eqs. (12)-
(15). Fixed parameters are p = 0.8, N = 104, q/N = 0.4.

the region of generalized synchronization. Therefore, in
a generalized synchronization state, the amount of infor-
mation shared between the field h and the local maps in
the autonomous system is greater than that between the
external field g and the maps in the driven system.

Figure 3(c) shows the information transfer Tyt,xi
t
versus

ǫ for both systems. Similarly to the behavior observed
for complete synchronization, as the coupling strength
approaches the critical value ǫc for the emergence of gen-
eralized synchronization, the information transfer in the
autonomous system becomes maximum. Also, the values
of Tyt,xi

t
for the driven system are greater than the values

of this quantity for the autonomous system. However, in
the generalized chaos synchronization regime, for ǫ > ǫc,
the information transfer in both systems does not vanish;
and the values of Tyt,xi

t
for the driven system are greater

than the values of this quantity for the autonomous sys-
tem. This means that the autonomous field must provide
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less information to the local maps than an external drive
for sustaining generalized synchronization. This behavior
should be expected since the autonomous field h already
contains information about the dynamics of the elements
in the system. At the onset of generalized synchroniza-
tion, both Tyt,xi

t
andMyt,xi

t
for the driven system are con-

tinuous while they are discontinuous for the autonomous
system. Thus, the quantities Myt,xi

t
and Tyt,xi

t
can dis-

tinguish between the driven and the autonomous systems
in a state of generalized synchronization, in contrast to
the case of complete synchronization.

C. Dynamics at the local level

At the local level in a system with a homogeneous
global field, each element is subject to a field that eventu-
ally induces some form of synchronization between that
element and the field, similarly to a single master-slave
system. Thus, the local dynamics can be seen as a sin-
gle drive-response map system where a drive g acts with
probability p on a map f . In particular, the linear sta-
bility analysis of the complete synchronized state for the
single driven-map yields the condition [25]

p ln |1− ǫ|+ λf < 0, (16)

where λf is the Lyapunov exponent of the map f . A
stable completely synchronized state occurs when this
condition is fulfilled. On the other hand, a stable gener-
alized synchronized state in both kinds of homogeneous
system can be numerically determined with the criterion
〈σ〉 < 10 < −7 on the space of parameters (p, ǫ).
Figure 4 shows the regions where complete and general-

ized synchronization can be found on the plane (p, ǫ) for
the systems with homogeneous global interactions con-
sidered here. The region of parameters for complete syn-
chronization is the same for both the autonomous and
the driven systems. The regions corresponding to gener-
alized synchronization are not identical for these systems
with the chosen functional forms of their global fields.

IV. HETEROGENEOUS GLOBAL

INTERACTIONS

The concept of a global field can be extended beyond
the concept of spatial homogeneity. In this respect, we
consider a system with heterogeneous global interactions,
as follows

xi
t+1 =

{

w(xi
t, yt), if i ∈ Rt,

f(xi
t), if i /∈ Rt.

(17)

where Rt is a subset containing pN elements of the sys-
tem, with p ≤ 1, which may be chosen at random at
each time t. Thus, the average fraction of elements cou-
pled to the field in Eq. (17) at any given time is p, so
that not all the maps in the system receive the same in-
fluence at all times. In comparison, the coupling of the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ǫ

p

CS

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ǫ

p

GS

(b)

FIG. 4. Regions for chaos synchronization on the plane (p, ǫ)
for systems with homogeneous global interactions. (a) Com-
plete synchronization (CS) for both the homogeneous driven
system, Eq. (11) with g = f = 4x(1 − x), and the homoge-
neous autonomous system, Eqs. (12) and (13). The boundary
of the region where complete synchronization takes place is
given by ǫ = 1 − e−λf/p, with λf = ln 2 for the map f .
(b) Generalized synchronization (GS) for both the homoge-
neously driven system Eqs. (11) and (14) (continuous line),
and for the homogeneous autonomous system Eqs. (12) and
(15) (dashed line), with N = 104, q/N = 0.4.

elements to the field in systems with homogeneous global
interactions, Eq. (10), is simultaneous and uniform; each
map receives the same influence from the field yt at any
t with probability p. At the local level, each map in the
system with heterogeneous global interactions Eq. (17) is
subject, on the average, to the global field yt with prob-
ability p over long times. For p = 1, the homogeneous
system Eq. (10) and the heterogeneous system Eq. (17)
are identical.

In the case of an external field (Fig. 1(c)), Eq. (17)
takes the form

xi
t+1 =

{

(1 − ǫ)f(xi
t) + ǫg(yt), if i ∈ Rt

f(xi
t), if i /∈ Rt,

yt+1 = g(yt).

(18)

For an autonomous field [Fig. 1(d)], the coupled map
system Eq. (17) becomes

xi
t+1 =

{

(1− ǫ)f(xi
t) + ǫh(xj

t : j ∈ Qt), if i ∈ Rt,
f(xi

t), if i /∈ Rt,
(19)

where, again, Qt is a subset consisting of q ≤ N ele-
ments of the system that may be chosen at random at
each time t. Each map in Eq. (19) is subject, on the
average, to the same coupling function h with probabil-
ity p over long times. The same condition holds for each
map with respect to the drive g in the heterogeneously
driven system Eq. (18). Then, if g exhibits the same
temporal evolution as h, the synchronization behavior of
the autonomous system Eq. (19) should be similar to the
behavior of the driven system Eq. (18) over long times.
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A. Complete synchronization

When the heterogeneously driven system Eq. (18) gets
synchronized, we have xi

t = x̄t. However, the synchro-
nized solution exists only if g = f . Therefore, only com-
plete synchronization xi

t = x̄t = yt can take place in this
system. On the other hand, a synchronized state in the
heterogeneous autonomous system Eq. (19) occurs when
f(xi

t) = f(x̄t). However, this synchronized solution ex-
ists only if h = f(x̄t). Therefore, as in the case of the
heterogeneous driven system, only complete synchroniza-
tion, where f(xi

t) = f(x̄t) = h, can emerge in the het-
erogeneous autonomous system Eq. (19). As an example

of a coupling function h(xj
t : j ∈ Qt) leading to complete

synchronization in the heterogeneous autonomous system
Eq. (19), we choose the partial mean field Eq. (13).

0
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0.3

0.4

0 0.2 0.4 0.6 0.8 1

〈δ〉

ǫ

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
yt,x

i
t

ǫ

(b)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

T
yt,x

i
t

ǫ

(c)

FIG. 5. Complete chaos synchronization in systems with het-
erogeneous global fields. (a) 〈δ〉 vs. ǫ, (b) Myt,x

i
t
vs. ǫ; and

(c) Tyt,x
i
t
vs. ǫ. On each panel, the continuous line corre-

sponds to the heterogeneously driven system Eq. (18) with
g = f , and the dashed line corresponds to the heterogeneous
autonomous system Eqs. (19) and (13). Fixed parameters:
p = 0.8, N = 104, q/N = 0.4.

Figures 5(a)-5(c) show the quantities 〈δ〉, Myt,xi
t
and

Tyt,xi
t
, respectively, as functions of ǫ for both heteroge-

neous systems, driven and autonomous, with global in-
teractions. Both systems reach complete chaos synchro-
nization at the critical value ǫc = 0.579.
The information transfer in Fig. 5(c) becomes maxi-

mal previous to the synchronization threshold, similarly
to the behavior observed in homogeneous systems. Thus,
a maximum in the information transfer Tyt,xi

t
in the space

of parameters can be regarded as a precursor to a state
of synchronization, either complete or generalized. Fig-
ures 2(c), 3(c), and 5(c) reveal that a lesser amount
of information flow from the global field to the local
maps is necessary for the emergence of synchronization
in autonomous systems, in comparison to that required
for synchronization in driven systems possessing similar
functional forms of their global fields and identical pa-
rameter values.
In either homogeneous or heterogeneous autonomous

systems, complete synchronization occurs independently
of the number q of elements randomly chosen in the func-
tion h, or if the q chosen elements are always the same.
Thus, the reinjection of an autonomous coupling function
h, although containing partial information about the sys-
tem, to a fraction of randomly selected elements suffices
to achieve complete synchronization. If the elements in
subset Rt receiving the coupling function h or the drive
g are always the same, then only elements in this sub-
set reach complete synchronization, since only those ele-
ments share the same information, on the average.

V. CONCLUSIONS

We have investigated the relationship between the
emergence of synchronization and the information flow
in dynamical systems possessing global interactions. We
have used the normalized mutual information Myt,xi

t
and

the information transfer Tyt,xi
t
between global and local

variables to characterize complete and generalized syn-
chronization in models of coupled chaotic maps for such
systems.
We have found that the presence of a homogeneous

global field, either external or internal, for all times is
not indispensable for achieving complete or generalized
synchronization in a system of chaotic elements. Com-
plete synchronization can also appear with heterogeneous
global fields; it does not requires the simultaneous shar-
ing of a global field by all the elements in the system.
Furthermore, the global coupling function in autonomous
systems does not need to depend on all the internal vari-
ables for reaching synchronization and, in particular, its
functional form is not determinantal for generalized syn-
chronization.
In both systems with homogeneous or heterogeneous

global fields, at the local level each element is subject,
on the average, to a field that eventually induces some
form of synchronization between that element and the
field, similarly to a single drive-response system. Then,
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a set of elements identical to the response and subject to
a global field that behaves as the drive also synchronizes
in a similar manner.
What becomes essential for the emergence of a given

synchronization state is that all the elements in the sys-
tem share a sufficient amount of information provided by
a field, on the average, over time. This amount is charac-
terized by the maximum value of the information transfer
Tyt,xi

t
previous to the critical values of parameters for ei-

ther complete or generalized synchronization. Therefore,
the quantity Tyt,xi

t
could be employed to anticipate the

occurrence of a state of synchronization in the space of
parameters of a system possessing a global interaction
field. Furthermore, the form in which information flows
from macroscopic to microscopic scales for the emergence
of synchronization, as measured by the quantities Myt,xi

t

and Tyt,xi
t
, differs between a driven and an autonomous

system with global interactions, even if they have simi-
lar functional forms for their local dynamics or for their
global fields. In summary, we have found that (i) near
the onset of complete synchronization when a parame-
ter is varied, the maximum of the information transfer
Tyt,xi

t
for a driven system is greater than that for an au-

tonomous system; (ii) near the onset of generalized syn-
chronization, the normalized mutual information Myt,xi

t

and Tyt,xi
t
exhibit sharp changes for an autonomous sys-

tem, while these quantities exhibit a smooth behavior for
a driven system; and (iii) in a state of generalized syn-
chronization, Tyt,xi

t
is greater for a driven system than for

an autonomous system and Myt,xi
t
is smaller for a driven

system than for an autonomous system.

Our results suggest that these information measures
could be used to characterize, and possibly also to pre-
dict, other forms of collective behaviors observed in dy-
namical systems having global interactions. Further ex-
tensions of this work include the investigation of the re-
lationship between top-down information flow between
global and local scales, and the emergence of collective
behaviors and structures in more complex dynamical net-
works.
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