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Abstract – We present a general framework for the study of coevolution in dynamical systems.
This phenomenon consists of the coexistence of two dynamical processes on networks of interacting
elements: node state change and rewiring of links between nodes. The process of rewiring is
described in terms of two basic actions: disconnection and reconnection between nodes, both
based on a mechanism of comparison of their states. We assume that the process of rewiring
and node state change occur with probabilities Pr and Pc, respectively, independent of each other.
The collective behavior of a coevolutionary system can be characterized on the space of param-
eters (Pr, Pc). As an application, for a voter-like node dynamics we find that reconnections between
nodes with similar states lead to network fragmentation. The critical boundaries for the onset of
fragmentation in networks with different properties are calculated on this space. We show that
coevolution models correspond to curves on this space describing functional relations between
Pr and Pc. The occurrence of a one-large-domain phase and a fragmented phase in the network
is predicted for diverse models, and agreement is found with some earlier results. The collective
behavior of the system is also characterized on the space of parameters for the disconnection and
reconnection actions. In a region of this space, we find a behavior where different node states can
coexist for very long times on one large, connected network.

Copyright c© EPLA, 2011

Many complex systems observed in nature can be
described as dynamical networks of interacting elements or
nodes where the connections and the states of the elements
evolve simultaneously [1–5]. The links representing the
interactions between nodes can change their strengths or
appear and disappear as the system evolves on various
time scales. In many cases, these modifications in the
topology of the network occur as a feedback effect of the
dynamics of the states of the nodes: the network changes
in response to the evolution of those states which, in turn,
determines the modification of the network. Systems that
exhibit this coupling between the topology and states have
been denominated as coevolutionary dynamical systems or
adaptive networks [1,3,4].
Coevolution dynamics has been studied in the

context of spatiotemporal dynamical systems, such as
neural networks [6,7], coupled map lattices [8,9], motile

(a)E-mail: mcosenza@ula.ve

elements [10], synchronization in networks [11], as well
as in game theory [1,3,12], spin dynamics [13], epidemic
propagation [14–17], and models of social dynamics and
opinion formation [18–24].
In many systems where this type of coevolution dynam-

ics is implemented, a transition is often observed from a
phase where most nodes are in the same state forming
a large connected network to a phase where the network
is fragmented into small disconnected components, each
composed by nodes in a common state [25]. This network
fragmentation transition is related to the difference in time
scales of the processes that govern the two dynamics: the
state of the nodes and the network of interactions [21]. In
these models, the time scales of the processes of interaction
between nodes and modification of their links are coupled
and controlled by a single parameter in the system.
The phenomenon of coevolution raises one of the funda-

mental questions in dynamical networks, namely whether
the dynamics of the nodes controls the topology of the
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network, or this topology controls the dynamics of the
nodes. In this paper we propose a general framework to
approach this question. We consider that the process by
which a node changes its neighbors, called rewiring, and
that the process by which a node changes its state, have
their own dynamics. Furthermore, we assume that these
two processes can be independent of each other. As a
consequence of this assumption, the collective behavior of
a coevolutionary system can be studied on the space of the
parameters representing the time scales for both processes.
A particular coevolution dynamics can be described by
formulating a specific coupling condition between the two
competing processes in the network. We shall show that
the collective behavior and the existence of a network frag-
mentation transition for given coevolution models can be
predicted from the general phase diagram of the system
on this space of parameters.
Let us focus on the mechanisms for the rewiring

process of the coevolution phenomenon. For simplicity, we
consider that the number of connections in the network
is conserved. Then, we assume that any rewiring process
consists of two basic actions: disconnection and reconnec-
tion between nodes. Both connecting and disconnecting
interactions are often found in social relations, biological
systems, and economic dynamics [4,5,18,23].
In general, either action, disconnection or reconnection,

is driven by some mechanism of comparison of the states of
the nodes. We define a parameter d∈ [0, 1] that measures
the tendency to disconnect between nodes in identical
states; i.e., d represents the probability that two nodes
in identical states become disconnected and 1− d is the
probability that two nodes in different states disconnect
from each other. Similarly, we define another parameter
r ∈ [0, 1] that describes the probability to connect between
nodes in identical states; then, 1− r is the probability
that two nodes in different states connect to each other.
A rewiring process can be characterized by the label dr,
where d indicates the probability for the disconnection
action between nodes sharing the same state, and r
assigns the probability for reconnection between nodes
possessing the same state. Thus, we can construct a plane
(d, r) where any rewiring process subject to disconnection-
reconnection actions between nodes can be represented as
a point on this plane.
In a simplified approach, we first consider a discrete

expression of the plane (d, r) as follows. We assume that
either action of the rewiring, disconnection or reconnec-
tion, can be driven by three distinct mechanisms: similar-
ity S (interaction between nodes sharing the same state),
randomness R (interaction between nodes regardless of
their states), and dissimilarity D (interaction between
nodes having different states). Then both r and d can only
take the values 0(D), 0.5(R), and 1(S). This gives rise
to nine possible rewiring processes based on the combi-
nations of these actions and their mechanisms, as shown
in fig. 1. For example, dr=RS denotes a rewiring where
node i is disconnected from node j chosen at random
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Fig. 1: Discrete rewiring processes on the disconnection-
reconnection action space (d, r). Either action can occur via
three mechanisms: similarity (S), randomness (R), or dissimi-
larity (D). The two-letter labels describe the resulting rewiring
processes dr. Rewirings that lead to a fragmentation transition
in our model are colored in grey.

and then reconnected to a node m that possesses a state
equal to that of i. We can classify many rewiring processes
employed in the literature under this scheme. For exam-
ple, an RS process corresponds to that used in ref. [18],
a DS process was used in ref. [19], while the rewirings
employed in refs. [20–22] can be regarded as of type DR.
Note that only the RR process is completely independent
of the states of the nodes.
Then a coevolutionary system can be analyzed as

follows. We assume that the dynamics of the system can
be described by the coexistence of a rewiring process dr
that takes place with a probability Pr, and a process
of node state change that occurs with a probability Pc.
We assume these two probabilities are independent of
each other. Therefore, the dynamics of the coevolutionary
system is represented by four basic parameters, d, r, Pr, Pc.
The collective behavior of the system can be characterized
on the space of these parameters. Then, a specific coevo-
lution model associated to a rewiring process dr consists
of a prescribed functional relationship between the proba-
bilities Pr and Pc that corresponds to a curve on the plane
(Pr, Pc).
As an application of this scheme, consider a random

network of N nodes having average degree of edges k̄, i.e.,
k̄ is the average number of neighbors of a node. Let νi
be the set of neighbors of node i, possessing ki elements.
Let us assume that the network topology is subject to
a rewiring process dr. For the node state dynamics, we
choose a simple imitation rule such as a voter-like model
that has been used in various contexts [18,26–29]. The
state of node i is denoted by gi, where gi can take any of
G possible options. The states gi are initially assigned at
random with a uniform distribution.
The coevolution dynamics in this system is defined by

iterating the following steps:

1) Choose randomly a node i such that ki > 0.

2) With probability Pr, apply rewiring process dr: break
the edge between i and a neighbor j ∈ νi that satisfies
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mechanism d, and set a new connection between node
i and a node l/∈ νi that satisfies mechanism r.

3) Choose randomly a node m∈ νi such that gi �= gm.
With probability Pc, set gi = gm.

Step 2 describes the rewiring process that allows the
acquisition of new connections, while step 3 specifies the
process of node state change; in this case the states of
the nodes becoming similar as a result of connections. We
have verified that the collective behavior of this system is
statistically invariant if steps 2 and 3 are interchanged.
The network size N , the average degree k̄, and the

number of options G remain constant during the evolu-
tion of the system. Thus, given a rewiring process dr,
the parameters of our model are the probability of re-
wiring, Pr, and the probability of changing the state of
a node, Pc.
The chosen imitation dynamics of the nodes tends to

increase the number of connected pairs of nodes with
equal states, while some rewiring processes may favor
the fragmentation of the network. Therefore, the time
evolution of the system should eventually lead to the
formation of a set of separate components, or subgraphs,
disconnected from each other, with all members of a
subgraph sharing the same state. We call domains such
subgraphs.
To characterize the collective behavior of the system, we

employ, as an order parameter, the normalized average size
of the largest domain in the system, Sm. Figure 2 shows Sm
as a function of the probability Pr for the discrete rewiring
processes in fig. 1 on a network having k̄= 4, with a fixed
value of the probability Pc.
We observe that most discrete rewiring processes in

fig. 1 lead to collective states characterized by values
Sm→ 1 and corresponding to a large domain whose size
is comparable to the system size. However, the rewiring
processes DS and RS exhibit a transition at some critical
value of Pr, from a regime having a large domain, to a
state consisting of only small domains for which Sm→ 0.
Those rewirings dr with r= S can sustain a stable regime
consisting of many small domains (SS leaves the initial
network structure statistically invariant). The critical
point P ∗r for the domain fragmentation transition in each
case is estimated by the value of Pr for which the largest
fluctuation of the order parameter Sm occurs. For the
rewiring process RS on a network with k̄= 4, a finite-size
scaling analysis is shown in the inset in fig. 2, where NαSm
is plotted vs.N(Pr −P ∗r ), with P ∗r = 0.541± 0.007, and for
various system sizes. We find that the data collapses in
the critical region when α= 0.50± 0.05. A similar scaling
analysis for the rewiring DS in fig. 2 yields P ∗r = 0.380±
0.007 and α= 0.20± 0.05. Thus, there exists a universal
scaling function F such that Sm =N

−αF (N(Pr −P ∗r ))
associated to each process RS and DS.
For a given rewiring process, the collective behavior

of the coevolving system can be characterized in terms
of the quantity Sm on the space of parameters (Pr, Pc).

-1000 -500 0 500 10000
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Fig. 2: Sm as a function of Pr for the 9 rewiring processes in
fig. 1, with fixed Pc = 0.6 and G= 320. Network parameters are
N = 3200 and k̄= 4. Only rewiring processes DS (triangles)
and RS (solid circles) exhibit a fragmentation transition.
Error bars indicate standard deviations obtained over 100
realizations of initial conditions for each value of Pr. Inset:
scaling collapse found with the exponent α= 0.5, for the
rewiring process RS with Pc = 0.6. Sizes N are 3200 (circles),
1800 (triangles), 800 (diamonds), 400 (squares), 200 (solid
circles.

Figures 3(a) and (b) show the phase diagrams arising
on the plane (Pr, Pc) when the rewiring processes RS
and DS, respectively, are employed on networks having
different values of k̄. In both cases, for each value of k̄, two
phases appear in the system as the parameters Pc and Pr
are varied: one phase consists of the presence of only small
domains and is characterized by Sm→ 0, and the other is
distinguished by the formation of a large domain and is
characterized by larger values of Sm. These two regimes
are separated by a critical curve (P ∗c , P ∗r ).
Figure 3 expresses the general phase diagram of a

coevolving system subject to a given node state dynamics
and a given rewiring process. Diverse coevolution models
can be represented in this diagram by formulating specific
coupling relations between the rewiring and the node state
dynamics. In general, such a coupling can be expressed as
a functional relation Pc(Pr) that describes a curve on the
space of parameters in fig. 3. For example, consider the
relation Pc = 1−Pr on the phase diagram in fig. 3(a). This
corresponds to the coevolution model proposed in ref. [18]
that uses a rewiring of type RS. In this case, the transition
from a large domain regime to a fragmented phase on
a network characterized by a value of k̄ should occur
when this straight line intersects the corresponding critical
boundary curve in fig. 3(a). These intersections yield the
values P ∗r = 0.171 for k̄= 2, P ∗r = 0.458 for k̄= 4, and P ∗r =
0.722 for k̄= 8, which agree with the critical values found
in [18]. Similarly, a rewiring of type DS and the coupling
function Pc = 1−Pr describe the two-state voter model
introduced in ref. [19]. The intersection of the line Pc =
1−Pr with the boundary curve corresponding to k̄= 4
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Fig. 3: Critical boundaries on the space of parameters (Pr, Pc)
for fragmentation transitions associated to two rewiring
processes on a network of size N = 3200. Each symbol-marked
curve indicates the corresponding boundary that separates
the regions where a state having a large domain (above the
curve) and a state consisting of many small domains (below
the curve) occur. (a) Rewiring process RS and node states
with G= 320 on a network having k̄= 2 (line with squares);
k̄= 4 (circles); k̄= 8 (diamonds). The slashed line is the rela-
tion Pc = 1−Pr, and the dotted line is Pc = 1.72Pr sin(πPr).
(b) Rewiring process DS and node states with G= 2 on a
network with k̄= 4 (line with circles); k̄= 8 (diamonds). The
slashed line is the function Pc = 1−Pr. All the numerical data
points are averaged over 100 realizations of initial conditions.

on the phase diagram in fig. 3(b) indicates the critical
value P ∗r = 0.375. This value agrees with that calculated
by a different procedure in ref. [19]. Furthermore, for a
network having k̄= 8, the predicted critical value for this
model is P ∗r = 0.653.
The phase diagrams of fig. 3 predict the critical values

(P ∗r , P ∗c ) for the network fragmentation transition in more
complicated coevolution models. For example, consider
the nonlinear relation Pc = aPr sin(πPr) on the space of
parameters of fig. 3(a). For a= 1.72, this function crosses
the critical boundary associated to k̄= 4 in fig. 3(a) twice,
at the values P ∗r = 0.25, corresponding to a recombination
of the network, and P ∗r = 0.77, signaling a fragmentation
transition. In the range of parameters Pr ∈ (0.25, 0.77), the
function lies within the one-large-domain region of the

Fig. 4: Sm as a function of Pr for different coevolution curves
subject to the rewiring process RS in fig. 3(a), on a network
with k̄= 4. Pc = 1−Pr (squares); Pc = 1.72Pr sin(πPr)
(circles). For each value of Pr, 100 realizations of initial
conditions were performed.

phase diagram. Thus, in a coevolution model described
by this function on a network characterized by k̄= 4, a
regime of one large domain should exist for this range of
parameters. For k̄= 2, only a fragmented phase occurs for
this coevolution function.
Figure 4 shows Sm as a function of Pr for the two

coevolution models presented in fig. 3 for a network
with k̄= 4. For the model in ref. [18], the fragmentation
transition takes place at the value P ∗r predicted from
fig. 3. Similarly, for the nonlinear model we confirm the
existence of a one-large-domain phase confined in the
region Pr ∈ (0.25, 0.77).
We have also investigated the behavior of the system

on the space of parameters (d, r) that describes general
rewiring processes, while keeping other parameters fixed.
As before, we start from a random network and a random
uniform distribution of states gi. As an example, let us
assume a dynamics such that Pr = 1 (the rewiring process
is always applied) and Pc = 1 (nodes always copy the
state of a neighbor). The above algorithm defining the
coevolution dynamics can be employed as d and r are
changed.
Figure 5 shows the average normalized size of the largest

network component S, regardless of the states of the
nodes, as a function of r, with fixed d= 0.2. The quantity
S reveals a network fragmentation transition at a value
r= 0.938. We also calculate, for long times, the normalized
average size of the largest subset of connected nodes in
the largest network component that share the same state,
denoted by Sg. Figure 5 shows S−Sg vs. r. We observe
that S−Sg = 0 for r < 0.56, meaning that all the nodes
on the largest component share the same state, on the
average. Since S→ 1 for r < 0.56, there is one large domain
whose size is comparable to that of the system. For r >
0.938, we have S−Sg→ 0 and S→ 0, corresponding to the
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Fig. 5: S (squares) and S−Sg (circles) as functions of r, for
the rewiring process with fixed d= 0.2, and Pr = 1, Pc = 1,
G= 20, N = 200, and k̄= 4. For each value of r, 10 realizations
of initial conditions were performed. Inset: semi-log plot of τ
vs. N for r= 0.2 (solid squares) and r= 0.8 (solid circles), with
fixed d= 0.2. Each time step corresponds to N iterations of the
dynamics.

occurrence of multiple small domains in the system. In the
range 0.56< r < 0.96, we observe S−Sg > 0, indicating
that not all the nodes on the largest network component
share the same state. Since S→ 1 in this range of r,
the system there consists of a connected network whose
size is comparable to the system size. Thus, in the range
0.56< r < 0.938 we find a situation where subsets having
distinct states coexist on a large connected network. In
order to elucidate the nature of this behavior, we show in
the insert in fig. 5 a semilog plot of the average time τ
for reaching one large domain (S = Sg = 1) in the system
vs. the system size N , for different values of r. We find
that τ scales exponentially with N as τ ∼ eαN . Thus, the
one-large-domain phase cannot take place in an infinite-
size system. For a finite-size system, the one-large multi-
state component should eventually decay to the one large
domain. We obtain numerically the exponents α= 0.064
for r= 0.2, in the one-large-domain region, and α= 0.167
for r= 0.8 in the one-large multi-state component region
of fig. 5. This means that the average decay time for
the one-large multi-state component is several orders of
magnitude larger than the corresponding time for the
one-large-domain phase. For N = 200, our results imply
convergence times of the order of τ ≈ 106 for r= 0.2 and
τ ≈ 1014 for r= 0.8. As N increases, the decay of the
one-large multi-state component cannot be observed in
practice. Thus, our results for continuous values of the
parameters r and d of the rewiring process suggest a
mechanism for the coexistence of subsets of nodes having
different states on a large connected network.
For given values of Pr and Pc that describe a coevo-

lution dynamics, the collective behavior of the system
can be characterized on the space of parameters for the

Fig. 6: Phase diagram on the space of parameters (d, r),
for Pr = 1, Pc = 1. Fixed G= 20, N = 200, and k̄= 4. The
fragmented phase occurs above the continuous line; the one-
large-domain phase takes place below the dashed line; the
region where one large component with coexisting states
emerges is bounded by these two lines. All numerical data
points are averaged over 10 realizations of initial conditions.

disconnection and reconnection actions, (d, r), by using
the quantities calculated in fig. 5. Figure 6 shows the
phase diagram resulting on the plane (d, r) for the values
Pr = 1 and Pc = 1. Three types of behaviors occur in the
system as the parameters r and d are changed. Two of
these behaviors correspond to the phases already found in
fig. 3: a one-large-domain phase and a fragmented phase
consisting of small domains. These two phases are sepa-
rated by a region in the plane (d, r) where a supertran-
sient behavior emerges, characterized by the coexistence
of several states on one large network component. Figure 6
reveals that the rewiring processes RS (d= 0.5, r= 1) and
DS (d= 0, r= 1) yield a fragmented phase when Pr = 1
and Pc = 1, in agreement with the results found in fig 3.
In conclusion, we have presented a general framework

for the study of the phenomenon of coevolution in dynam-
ical networks. Coevolution consists of the coexistence of
two processes, node state change and rewiring of links
between nodes, that can occur with independent probabili-
ties Pr and Pc, respectively. We have analyzed the process
of rewiring in terms of the actions of disconnection and
reconnection between nodes, both based on a mechanism
of comparison of their states.
For a given rewiring process, the collective behavior

of a coevolving system can be represented in the space
of parameters (Pr, Pc). For a voter-like node dynamics,
we found that only reconnections between nodes with
similar states can lead to network fragmentation. We
have calculated the critical boundaries on this space for
the fragmentation transition in networks having different
values of k̄. The size of the region for the fragmented
phase in the space (Pr, Pc) decreases with increasing k̄.
This suggests that fragmentation is more likely to be
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observed in networks where k̄�N . We have shown that
coevolution models correspond to curves Pc(Pr) on the
plane (Pr, Pc). The occurrence of network fragmentation
as well as recombination transitions for diverse models can
be predicted in this framework.
We have also characterized the collective properties of

the system on the space of actions for rewiring processes
(d, r), for given values of Pr and Pc that define a coevolu-
tion dynamics. On a region of this space, we have unveiled
a regime where subsets having different states can coexist
for very long times in one large, connected network .
We have limited our study to the case when the number

of connections in the coevolving network is conserved.
This condition is expressed in step 2 of the algorithm,
where both actions of disconnection and reconnection
occur with probability equal to one. This condition can
be generalized by considering different probabilities for
each of these actions. Thus, our framework provides a
scenario for studying coevolving dynamical networks with
no conservation of the total number of links.
Other extensions to be investigated in the future include

the characterization of the topological properties of the
network on the continuous plane (d, r), the consequences
of preferential attachment rules for the reconnection
action, the consideration of variable connection strengths,
and the influence of the node dynamics on the collective
behavior of coevolving systems.
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