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Emergence and persistence of communities in coevolutionary networks
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We investigate the emergence and persistence of communities through a recently proposed mech-
anism of adaptive rewiring in coevolutionary networks. We characterize the topological structures
arising in a coevolutionary network subject to an adaptive rewiring process and a node dynamics
given by a simple voterlike rule. We find that, for some values of the parameters describing the
adaptive rewiring process, a community structure emerges on a connected network. We show that
the emergence of communities is associated to a decrease in the number of active links in the system,
i.e. links that connect two nodes in different states. The lifetime of the community structure state
scales exponentially with the size of the system. Additionally, we find that a small noise in the node
dynamics can sustain a diversity of states and a community structure in time in a finite size system.
Thus, large system size and/or local noise can explain the persistence of communities and diversity
in many real systems.

PACS numbers: 89.75.Fb; 87.23.Ge; 05.50.+q

I. INTRODUCTION

Many social, biological, and technological systems pos-
sess a characteristic network structure consisting of com-
munities or modules, which are groups of nodes distin-
guished by having a high density of links between nodes
of the same group and a comparatively low density of
links between nodes of different groups [1–4]. Such a
network structure is expected to play an important func-
tional role in many systems. In a social network, com-
munities might indicate factions, interest groups, or so-
cial divisions [1]; in biological networks, they encompass
entities having the same biological function [5–7]; in the
World Wide Web they may correspond to groups of pages
dealing with the same or related topics [8]; in food webs
they may identify compartments [9]; and a community
in a metabolic or genetic network might be related to a
specific functional task [10].
Since community structure constitutes a fundamental

feature of many networks, the development of methods
and techniques for the detection of communities repre-
sents one of the most active research areas in network
science [2, 11–17]. In comparison, much less work has
been done to address a fundamental question: how do
communities arise in networks? [18].
Clearly, the emergence of characteristic topological

structures, including communities, from a random or fea-
tureless network requires some dynamical process that
modifies the properties of the links representing the inter-
actions between nodes. We refer to such link dynamics as
a rewiring process. Links can vary their strength, or they
can appear and disappear as a consequence of a rewiring
process. In our view, two classes of rewiring processes
leading to the formation of structures in networks can be
distinguished: (i) rewirings based on local connectivity
properties regardless of the values of the state variables
of the nodes, which we denote as topological rewirings ;
and (ii) rewirings that depend on the state variables of

the nodes, where the link dynamics is coupled to the node
state dynamics and which we call adaptive rewirings.

Topological rewiring processes have been employed to
explain the origin of small-world and scale-free networks
[19, 20]. These rewirings can lead to the appearance of
community structures in networks with weighted links
[21] or by preferential attachment driven by local clus-
tering [22]. On the other hand, there is currently much
interest in the study of networks that exhibit a coupling
between topology and states, since many systems ob-
served in nature can be described as dynamical networks
of interacting nodes where the connections and the states
of the nodes affect each other and evolve simultaneously
[23–29]. These systems have been denoted as coevolu-
tionary dynamical systems or adaptive networks and, ac-
cording to our classification above, they are subject to
adaptive rewiring processes. The collective behavior of
coevolutionary systems is determined by the competi-
tion of the time scales of the node dynamics and the
rewiring process. Most works that employ coevolution-
ary dynamics have focused on the characterization of the
phenomenon of network fragmentation arising from this
competition. Although community structures have been
found in some coevolutionary systems [30–33], investi-
gating the mechanisms for the formation of perdurable
communities remains an open problem.

In this paper we investigate the emergence and the per-
sistence of communities in networks induced by a process
of adaptive rewiring. Our work is based on a recently pro-
posed general framework for coevolutionary dynamics in
networks [29]. We characterize the topological structures
forming in a coevolutionary network having a simple node
dynamics. We unveil a region of parameters where the
formation of a supertransient modular structure on the
network occurs. We study the stability of the commu-
nity configuration under small perturbations of the node
dynamics, as well as for different initial conditions of the
system.

http://arxiv.org/abs/1407.0388v1
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II. EMERGENCE OF COMMUNITIES

THROUGH AN ADAPTIVE REWIRING

PROCESS

We recall that a rewiring process in a coevolutionary
network can be described in terms of two basic actions
that can be independent of each other: disconnection
and connection between nodes [29]. These actions may
correspond to discrete connection-disconnection events,
or to continuous increase-decrease strength of the links,
as in weighted networks.

Both actions in an adaptive rewiring process are, in
general, based on some mechanisms of comparison of
the states of the nodes. The disconnection action can
be characterized by a parameter d ∈ [0, 1], that mea-
sures the probability that two nodes in identical states
become disconnected, and such that 1 − d is the proba-
bility that two nodes in different states disconnect from
each other. On the other hand, the connection action
can be characterized by another parameter r ∈ [0, 1]
that describes the probability that two nodes in iden-
tical states become connected, and such that 1− r is the
probability that two nodes in different states connect to
each other [29]. In a social context, these actions allow
the description of diverse manifestations of phenomena
such as inclusion-exclusion, homophily-heterophily, and
tolerance-intolerance.

To investigate the formation of topological structures
through an adaptive rewiring process, we consider a ran-
dom network of N nodes having average degree k̄. Let
νi be the set of neighbors of node i, possessing ki ele-
ments. The state variable of node i is denoted by gi. For
simplicity, we assume that the node state variable is dis-
crete, that is, gi can take any of G possible options. The
states gi are initially assigned at random with a uniform
distribution. Therefore there are, on the average, N/G
nodes in each state in the initial random network. We
assume that the network is subject to a rewiring process
whose actions are characterized by parameters d and r.

For the node dynamics, we employ an imitation rule
such as a voterlike model that has been used in several
contexts [34–37]. This model provides a simple dynamics
for the node state change without introducing any addi-
tional parameter. Parameters of the node dynamics can
modify the time scale of the change of state of the nodes
[38]; however, those parameters should not produce qual-
itative changes in the global behavior of the system.

Then, the coevolution dynamics in this system is given
by iterating these three steps: (1) Chose at random a
node i such that ki > 0. (2) Apply the rewiring process:
select at random a neighbor j ∈ νi and a node l /∈ νi. If
the edge (i, j) can be disconnected according to the rule
of the disconnection action and the nodes i and l can be
connected according to the rule of the connection action,
break the edge (i, j) and create the edge (i, l). (3) Apply
the node dynamics: chose randomly a node m ∈ νi such
that gi 6= gm and set gi = gm. This rewiring conserves
the total number of links in the network. We have verified

that the collective behavior of this system is statistically
invariant if steps (2) and (3) are reversed.

The parameters N , k̄, and G remain constant. We also
maintain fixed the ratio γ ≡ N/G = 10.

To study the dynamical behavior of the network topol-
ogy, we consider the time evolution of several statistical
quantities in the system for different values of the pa-
rameters d and r. We characterize the integrity of the
network by calculating the normalized (divided by N)
average size of the largest component or connected sub-
graph in the system, regardless of the states of the nodes,
at time t denoted by S(t), where a time step consists ofN
iterations of the algorithm. We call a domain a subset of
connected nodes that share the same state, and denote by
Sg(t) the normalized average size of the largest domain
in the system at time t. Additionally, we calculate the
fraction of links that are active in the system at a given
time, that we call ρ(t). A link is active if it connects
two nodes in different states. Lastly, as a measure of the
modular structure of the network, we define the quantity
∆Q(t) ≡ Q(t) − Q(0) as the modularity change, where
Q(t) is the modularity of the network at time t, calcu-
lated through a community detection algorithm [14], and
Q(0) is the value of this quantity for the initial random
network.

Figure 1 shows the above four quantities as functions
of time for a fixed value d = 0.2 and different values of
r. For r = 0.2, Fig. 1(a) reveals that S → 1 for all times,
a value corresponding to a large component whose size
is comparable to that of the system. This indicates that
the network remains connected during the evolution of
the system. The quantity Sg(t) initially increases in time
until it reaches a stationary value Sg(t) ≈ 0.58 during a
long time interval (four orders of magnitude); there are
two connected groups of nodes in different states on the
average. Due to finite size fluctuations [39, 40], the sys-
tem eventually reaches a homogeneous absorbing state,
where Sg(t) = S → 1. However, the sizes of these fluctu-
ations decrease as the size of the system increases, until
they decay to zero in the limit N → ∞; in that situa-
tion the homogeneous absorbing state is not reached [39].
On the other hand, the fraction of active links ρ(t) de-
creases as Sg(t) increases, until ρ(t) reaches a stationary
value during the same interval of time as Sg(t) becomes
stationary. Since eventually one state survives on a large
connected network component, the number of active links
goes to zero. This behavior agrees with that observed in
Refs. [24, 39]. The value of the quantity ∆Q(t) remains
close to zero, indicating that the modularity of the initial
random network does not vary in time in this region of
parameters.

Figure 1(b) shows that, for r = 1, S decays rapidly
to a value tending to γ/N , indicating that the network
has been fragmented in various small components. This
fragmentation is associated with a rapid decay to zero of
the fraction of active links ρ. The rapid drop of ρ brings
a limitation to the process of state change of the nodes
and, therefore, the size of the largest domain Sg remains
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FIG. 1: Time evolution of the quantities S (#), ρ ( ), Sg (�)
and ∆Q (�). System size is N = 80, k̄ = 4, and G = 8; fixed
parameter d = 0.2. a) r = 0.2. b) r = 1.0. c) r = 0.8. The
gray zone indicates the interval of time for which the quantity
∆Q reaches a constant value. All numerical data points are
averaged over 20 realizations of initial conditions.

about the value of the average fraction of nodes in a given
state that are present in the initial network, i.e. γ/N .
The fragmentation of the network is also reflected in the
behavior of ∆Q(t), that grows until a stationary value
of maximum modularity associated to the presence of
separate domains, according to the employed algorithm
[14].

The evolution of the quantity S(t) in Fig. 1(c) indi-
cates that the initial network with S = 1 (visualized
in Fig. 2(a)) undergoes a fragmentation process consist-
ing of separated domains where S decreases (Fig. 2(b)),
and then a recombination process takes place (Figs. 2(c),
2(d)) until the network becomes a connected graph again,

a) b)

c) d)

FIG. 2: Snapshots of the network structure and node states
at different times during the evolution of the system, for one
realization of initial conditions in the case of Fig. 1(c). Dif-
ferent node states are represented by different shades of gray.
Fixed parameters are N = 80, k̄ = 4, r = 0.8, d = 0.2. a)
t = 0; b) t = 20; c) t = 150; d) t = 105.

where S → 1. A minimum value of S separates these
two processes occurring during the time evolution of the
system. The early fragmentation and recombination pro-
cesses occurring in the network are also manifested in the
behavior of the modularity change ∆Q(t), which exhibits
a maximum as S goes to a minimum. The minimum of S
also coincides with the decay of ρ to a small value that is
maintained for a long interval of time (four orders of mag-
nitude in time, indicated in color gray), until eventually ρ
drops to zero when the nodes in the reconnected network
reach a homogeneous state, corresponding to Sg = 1.
The subsistence of a minimum fraction of active links in
the network for a long time permits the reattachment
of separated domains to form a large connected network
during this time interval, characterized by S = 1 and
Sg ≈ 0.5. Since active links connect different domains,
then the majority of links must lie inside the different do-
mains coexisting on the large connected network. There-
fore, there exist several domains inside which nodes are
highly connected, with fewer connections between differ-
ent domains. This type of network structure has been
called a modular or community structure [1]. The corre-
sponding network is visualized in Fig. 2(d). The emer-
gence of a modular structure in the network is reflected
in the quantity ∆Q(t), which remains at a constant posi-
tive value during this stage. The asymptotic state of the
system corresponds to a large random connected network
(S = 1), similar to the initial one (∆Q = 0), but with
its nodes in a homogeneous state (Sg = 1) and therefore,
with no active links left (ρ = 0).

To investigate the effects of the size of the system on
the persistence of communities in the network, we show
in Fig. 3 a semilog plot of the average asymptotic time
〈τ〉 for which ∆Q(τ) = 0 (τ > 0), as a function of N . We
numerically find that 〈τ〉 scales exponentially with N as
〈τ〉 ∼ eβN , with β = 0.2 ± 0.05. This behavior is char-
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acteristic of supertransient states in dynamical systems
[41]. For a finite size system, the modular structure and
the coexistence of various domains on a connected net-
work should eventually give place to one large domain.
However, the asymptotic random connected network in
a homogeneous state cannot occur in an infinite size sys-
tem. Thus, for large enough N , the decay of the modular
structure cannot be observed in practice.

N

〈τ〉

1009080706050403020

1010

108

106

104

102

1

FIG. 3: Semilog plot of the average time 〈τ 〉 for which
∆Q(τ ) = 0, as a function of the system size N , for fixed
values k̄ = 4, d = 0.2 and r = 0.8. The continuous line
is the linear fitting with slope β = 0.2 ± 0.05. Error bars
indicate standard deviations obtained over 10 realizations of
initial conditions for each point.

The emergence of a modular structure can be charac-
terized by calculating the value of the modularity change
∆Q at a fixed time (within the corresponding lapse of
existence of communities) as a function of r with a fixed
value of d, as shown in Fig. 4. There is a critical value r∗

below which ∆Q is zero, reflecting the subsistence of the
initial random topology, and above which ∆Q increases,
indicating the appearance of a modular structure in the
network. The onset of modularity can be described by
the relation ∆Q ∝ (r−r∗)ν , with ν ≈ 0.50±0.01, typical
of a continuous phase transition. Figure 4 also shows the
fraction of active links ρ at t = 106 as a function of r.
We observe that the modularity transition at r∗ coincides
with a drop of ρ to small values below a value ρ∗. Since
active links are associated to the contact points defin-
ing the interphase between different domains [33], a low
density of active links constrains the growth of domains,
giving rise to the modular structure in the network.
In Fig. 4 we also plot S as a function of r. There is

a critical value rc ≈ 0.96 above which a fragmentation
of the network, characterized by S → 0, takes place.
The employed modularity measure gives high values for
r > rc, manifesting the presence of trivial communities
or separated graph components. We have verified that
algorithm [11] gives a behavior for modularity similar to
that shown in Fig. 4 for r ∈ [r∗, rc]. For r < r∗, we obtain
S → 1 and ∆Q = 0; indicating that the network remains
connected and preserves its initial random structure. The
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FIG. 4: ∆Q (�), ρ ( ), and S (#, right vertical axis) as
functions of r, with fixed d = 0.2, at t = 106 (within the
interval of subsistence of communities) for a network with
N = 1000, k̄ = 4. The continuous thick line is the fitting
of the values of ∆Q corresponding to the function ∆Q ∝
(r − r∗)ν , with ν ≈ 0.50 ± 0.01. The horizontal dashed line
marks the value ρ∗ below which modularity emerges. Gray
color indicates the region of parameters where communities
appear in the connected network. All numerical data points
are averaged over 10 realizations of initial conditions. Inset:
space of parameters (d, r) showing in gray the region where
communities appear within the boundary curves d(r∗) (�)
and d(rc) (#).

modular structure appears in the connected network for
r∗ < r < rc; this state is characterized by S → 1, ∆Q >
0, and 〈τ〉 ∼ eβN . The inset in Fig. 4 shows the region on
the space of parameters (d, r) where communities appear.
Network fragmentation in this space occurs for parameter
values below the open-circles boundary line.

III. STABILITY OF COMMUNITIES

To shed light on the nature of the transient behavior
of the modular structure, we introduce a perturbation in
the node dynamics as follows: at each time step (every N
iterations of the algorithm) there is a probability ξ that a
randomly chosen agent changes its state assuming any of
the G possible states at random. Thus, the parameter ξ
represents the intensity of the random noise affecting the
node dynamics, with ξ = 0 corresponding to the original
algorithm. Intrinsic random noise in the local states has
been employed to simulate the phenomenon of cultural
drift in models of social dynamics [42, 43]. In addition,
we study the robustness of the communities for different
initial conditions of the system: (i) an initial random net-
work and a random distribution of states; (ii) an initial
random network and a homogeneous state; and (iii) an
initial fragmented network consisting of G separated do-
mains, each with N/G nodes. Condition (i) corresponds
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to the initial condition used in the original algorithm,
while initial conditions (ii) and (iii) correspond to the
absorbing states in the connected and the fragmented
configurations, respectively.
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FIG. 5: Time evolution and dependence of ∆Q on the in-
tensity of the noise ξ for three different initial conditions of
the network structure and states, with fixed N = 80, k̄ = 4,
G = 8, d = 0.2, r = 0.8. On each panel, # initial condition
(i);  initial condition (ii); � initial condition (iii). (a) ∆Q

versus time with ξ = 0. (b) ∆Q versus time with ξ = 10−4.
(c) ∆Q versus time with ξ = 1. (d) ∆Q as a function of ξ at
t = 109.

Figures 5(a)-(c) show ∆Q versus time with fixed pa-
rameters d = 0.2, r = 0.8, for three different values of
the intensity of the noise ξ and the three initial condi-
tions described above. Figure 5(a) shows that, in absence
of noise and regardless of the initial conditions, the sys-
tem reaches the same asymptotic state, with ∆Q = 0,
as in Fig. 1(c). No transient structures appear for the
homogeneous initial condition (ii), as expected; however
a modular structure emerges as a transient state for con-
ditions (i) y (iii). For these conditions, the transient time
for the modular structure depends on the system size as
in Fig. 3. Figure 5(b) shows that a modular structure,
characterized by a nonvanishing value of ∆Q, can be sus-
tained in time by the presence of a small noise for the dif-
ferent initial conditions, in spite of the finite size of the
network. We have verified that S = 1 for the three cases
in both Fig. 5(a) and Fig. 5(b). A larger noise intensity
leads to an increment of the value of ∆Q for the different
initial conditions, as shown in Fig. 5(c). For the three
cases we obtained S < 1, corresponding to a fragmented
network.
Figure 5(d) shows ∆Q as a function of ξ at fixed time

t = 109, after transients, for the three initial conditions.
Note that the asymptotic behavior of ∆Q(ξ) is indepen-
dent of the initial conditions. There is an intermediate
range of the noise intensity where a modular structure
can be maintained in the network. The value of ∆Q(ξ)
in this region corresponds to the value of this quantity

observed in the temporal plateau in Fig. 1(c).
Our results show that, for an intermediate range of

noise intensity, the modular structure can be sustained
in time in a finite size coevolutionary system. An appro-
priate level of noise keeps the diversity of states in the
system and prevents the disappearance of active links.
As a consequence, the convergence to a homogeneous
asymptotic state does not occur. The role of noise in the
modular configuration is similar to that of the limit of
infinite system size, N → ∞, where a diversity of states
is always present and domains can subsist indefinitely.

IV. CONCLUSIONS

We have employed a recent description of the process
of adaptive rewiring in terms of two actions: connection
and disconnection between nodes, both based on some
criteria for comparison of the nodes state variables [29].
We have found that, for some values of the parameters r
and d characterizing these actions, a modular structure
emerges previous to the settlement of a random network
topology. The actions of the rewiring process modify the
competition between the time scales of the rewiring and
the node dynamics, and therefore they can also control
the emergence of communities. The modular behavior
separates two network configurations on the space of pa-
rameters (d, r): a state where the initial random topology
stays stationary in time, and a fragmented configuration.
We have shown that the modular structure is a super-
transient state.
The presence of communities has been characterized

by several collective properties: the network is connected
(S → 1); there are various domains coexisting on the
network (Sg < 1); and the modularity measure increases
with respect to that of the initial random network (∆Q >
0).
The formation of modular structures is related to the

number of active links present in the network: commu-
nities emerge when the fraction of those links drops to
small values. Since active links are associated with con-
tact points that define the interphase between different
domains in the network, a low density of active links
means a restriction to the possibility of growth for do-
mains. As a result, different domains are connected by
few links, leading to the appearance of communities.
The appearance of a short-lived modular structure

always precedes the fragmentation of the network:
Fig. 1(b) shows that the quantities ρ, S, Sg, and ∆Q
at time t = 5 reach those values associated to a mod-
ular structure. We have verified, by plotting succes-
sive snapshots, that the network topology indeed passes
through a modular phase before becoming fragmented.
Thus, communities constitute temporary configurations
that are likely to emerge during the evolution of the net-
work topology of coevolutionary systems. Community
structure has also been observed in the transient dynam-
ics of models of epidemic spreading on adaptive networks
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[44]. We have found that, for appropriate parameter val-
ues of the corresponding adaptive rewiring process, the
community structure can become a supertransient state.
We have shown that noise in the node dynamics can

sustain a diversity of states and the community structure
in time in a finite size coevolutionary system. The role
of noise on the lifetime of the modular structure state is
similar to that of the limit of infinite system size. Thus,
large system size and/or local noise can explain the per-
sistence of communities and diversity in many real sys-

tems [45, 46].
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Kertész J., Phys. Rev. Lett. 99, (2007) 228701.
[22] Bagrow J. P., Brockmann D., Phys. Rev. X 3, (2013)

021016.
[23] Zimmermann M. G., Egúıluz V. M., San Miguel M.,
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[40] Böhme G. A. , Gross T., Phys. Rev. E 85, (2012) 066117.
[41] Kaneko K., Phys. Lett A 149, (1990) 105.
[42] Axelrod R., J. Conf. Resolution 41, (1997) 203.
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