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Abstract
The effects of molecular crowding on small molecule diffusion and chemical
reaction rate coefficients are investigated. The systems considered comprise
a random distribution of stationary spherical obstacles occupying a volume
fraction φ of the system and a large number of small molecules whose dynamics
are followed. Chemical reactions are studied in such crowded systems where,
in addition to the obstacles, a large reactive sphere C is present that catalyses
the reaction A + C → B + C . Using a mesoscopic description of the
dynamics employing multiparticle collisions among the small molecules, the φ

dependence of the diffusion and reaction rate coefficients is computed. Both the
diffusion and reaction rate coefficients decrease with increase of the obstacle
volume fraction as expected but variations of these quantities with φ are not
predicted by simple models of the dynamics.

1. Introduction

Diffusion and reaction are two of the most basic transport mechanisms that underlie the
description of a wide range of chemical and biological processes. Numerous investigations
have been devoted to the measurement and computation of diffusion and rate coefficients in
bulk homogeneous solutions. These transport processes can be modified significantly when the
environment is crowded by a high density of obstacles. An important example of a crowded
molecular system is a biological cell.

The environment of the living cell is very different from that usually encountered in
laboratory studies of chemical reactions [1]. The cellular volume is occupied by structural
elements such as microtubules and filaments, various organelles and a variety of other
macromolecular species. Such environments are called crowded since no one species may be in
high concentration but collectively the macromolecular species occupy a large volume fraction
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of the cell, typically ranging from 0.1 to 0.4 of the total cellular volume [2, 3]. Crowding is
used to refer to the effects of steric repulsions on reactive and diffusion processes that take
place in media with a high volume fraction of obstacles.

The effects of crowding in cellular environments have been recognized and studied
for many years [4–6]. Crowding can influence the equilibrium properties of the system
such as equilibrium constants (or even transition state theory estimates of rate constants)
by changing the activities of chemical species. Crowding can also change transport
properties. It is well established that crowding can considerably decrease the diffusion
coefficients of macromolecules [7, 8], influence diffusion-controlled reaction rates [9], lead
to shifts in chemical equilibria [10], alter protein folding processes and influence protein
assembly [11–15]. The largest effects are seen for macromolecules but crowding also influences
the dynamics of small molecules.

In this paper we study effects of crowding on the dynamical properties of small molecules.
While our investigations are motivated by effects seen in crowded cellular environments, we
make no attempt to realistically model the internal structure of a crowded biological cell.
Instead, we consider a simple model where small particles undergo motion among a random
distribution of stationary spherical obstacles and compute the volume fraction dependence
of the diffusion coefficient. We also study the situation where a large catalytic sphere is
present in the sea of obstacles. The large sphere catalyses the conversion of a species A
to a species B and we compute the reaction rate coefficient as a function of the volume
fraction of obstacles. Since it is difficult to obtain analytical estimates for these transport
properties for arbitrary values of the volume fraction, our results are obtained from simulations
of the dynamics using a mesoscopic model that retains the essential conservation laws of full
molecular dynamics [16–18]. Thus, while our model is simple, it does capture some of the
generic features of crowding effects on small molecule motion and forms the starting point for
the construction of more detailed models of crowded cellular environments.

In section 2 we give the details of the model and describe the multiparticle collision
dynamics that is employed in the simulations. Diffusion of small particles in a field of obstacles
in considered in section 3 and the simulation results are compared with analytical estimates of
the volume fraction dependence of the diffusion coefficient. In section 4 we describe how the
reaction rate can be computed for diffusion-influenced reactions occurring in a field of inert
obstacles. The conclusions of the study are given in section 5.

2. Mesoscopic dynamics in crowded environments

The simulations of diffusion and reaction in crowded environments were carried out on a model
system comprising a large number of particles undergoing reactive and non-reactive dynamics
in a field of spherical obstacles. More specifically, we consider a three-dimensional system with
volume V containing numbers NA and NB (N = NA+NB ) of A and B type point particles with
mass m. The volume contains a single stationary catalytic sphere C with radius σC on whose
surface the irreversible reaction A + C → B + C takes place. In addition, the volume contains
a number NS of other stationary spherical obstacles with radius σ . The volume fraction of
obstacles and catalytic particle is φ = 4π(NSσ

3 + σ 3
C)/3V ≡ φo + φC, where φo and φC

are the volume fractions of obstacles and catalytic spheres, respectively. Periodic boundary
conditions were employed in the simulations.

In order to simplify the dynamical description while retaining the essential features of
full molecular dynamics (MD), we describe the evolution of the A and B particles using
multiparticle collision (MPC) dynamics (also called stochastic rotation dynamics) [16–18].
In MPC dynamics particles with continuous positions and velocities free stream between
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multiparticle collision events that occur at discrete times τ . To carry out collisions, the volume
V is divided into cubic cells with length � labelled by an index ξ . At every time τ each cell
is assigned at random a rotation operator ω̂ξ , chosen from some set of rotation operators. If
Nξ is the instantaneous number of particles in cell ξ , the centre of mass velocity in the cell is

Vξ = N−1
ξ

∑Nξ

i=1 vi where vi is the velocity of particle i . In MPC dynamics the post-collision
velocity is given by

v′
i = Vξ + ω̂ξ (vi − Vξ ). (1)

It has been shown that this mesoscopic dynamics preserves mass, momentum and energy
and the single-particle velocity distribution is Maxwellian [16]. It also yields the full set
of hydrodynamic equations on long distance and timescales and the transport properties of
the model can be computed [16–22]. Thus, it provides a simple mesoscopic description of
the dynamics that retains the important features of MD yet allows large scale simulations
of the dynamics to be carried out for long times. MPC dynamics has been used previously
to study friction and hydrodynamic interactions [23, 24], polymer dynamics [25–32],
suspensions [33–35] and reaction–diffusion systems [36, 37]. In general we may choose
different kinds of MPC dynamics for the different species [36] but for simplicity here the A
and B species are assumed to undergo identical MPC collisions.

The obstacles are taken to be hard spherical objects. When an A or B particle collides
with an obstacle its velocity is reversed (bounce-back collisions). The catalytic particle C is
special. It too is a hard spherical object but when an A particle collides with its surface not
only is its velocity reversed but with probability pR it is converted to a B-type particle. For
the irreversible reactive case we consider here, the identities of the B particles are not changed
when they collide with C .

The simulations presented in this paper were carried out on systems with volume V =
(50)3 or V = (100)3 multiparticle collision cells with unit volume. The rotation operators in
the MPC dynamics were taken to describe rotations by ±π/2 about randomly chosen axes. The
catalytic sphere with radius σC = 10 was placed in the centre of the simulation volume. The
number of obstacles with radius σ = 1 was computed from the desired value of the volume
fraction φ and obstacles were randomly placed in the volume, ensuring that there were neither
overlaps among the obstacles nor with the catalytic sphere. The total mean density of A and
B particles with unit mass was taken to be n0 = 5 particles per cell. The temperature in
reduced units (m = 1, � = 1, τ = 1) was T = 1/3. Thus, a particle moving with a
velocity corresponding to the mean thermal velocity will travel a distance of one cell between
multiparticle collisions. For parameter regimes where the particles travel on average a small
fraction of a cell, random multiparticle collision grid shifting can be introduced to restore
Galilean invariance [19].

3. Diffusion in a field of obstacles

Before investigating chemically reacting systems, we consider diffusion of the small A or
B particles in a random field of stationary obstacles with σ = 1 and a volume fraction
φo = 4π NSσ

3/3V ≡ φ. The catalytic sphere is not present in the system. Our interest
is in D(φ), the diffusion coefficient as a function of the volume fraction. In the absence of
obstacles it is not difficult to compute an approximate analytical expression for the diffusion
coefficient D0 for multiparticle collision dynamics. The result is [36]

D0 = kBT

2m

(
2n0 + 1 − e−n0

n0 − 1 + e−n0

)

, (2)
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Figure 1. Diffusion coefficient D(φ) (squares) as a function of the volume fraction φ. The solid
line is the theoretical estimate given in equation (4). The solid circles are the results of simulations
of D(φ) when the catalytic sphere is present.

where n0 is the total density of the small particles. Comparison of this formula with the results
of simulations has shown that this analytical expression provides an accurate estimate of the
diffusion coefficient [36]. In the presence of obstacles, we expect the diffusion coefficient to
decrease and this is indeed the case as figure 1 shows. The diffusion coefficient was computed
from the mean square displacement of the small particles. Since the A and B particles are
mechanically identical, we need not distinguish these species in the computation of the self-
diffusion coefficient.

If we assume that n(r, t), the total density field of the A and B particles outside the
obstacles, obeys the diffusion equation and the obstacles are accounted for by an induced
diffusion flux field J(r, t), the evolution equation for the density field is

∂

∂ t
n(r, t) = D0∇2n(r, t) − ∇ · J(r, t). (3)

Starting from this equation, it is possible to derive an equation for 〈n(r, t)〉, the density field
averaged over the configuration of the obstacles, which yields an effective volume fraction
dependent expression for the diffusion coefficient. In the mean field limit, assuming a random
distribution of obstacles, the result is [38]

D(φ) = D0
1 − φ

1 + φ/2
. (4)

The solid line in figure 1 is a plot of this function and is seen to be in good agreement with the
simulation results.

Next, we compute the diffusion coefficient for a system containing a large catalytic sphere
with radius σC = 10 and a distribution of obstacles with σ = 1. A picture of the catalytic
sphere and a configuration of the obstacles for φ = 0.15 is shown in figure 2. The plot of
D(φ) for this case in figure 1 (solid circles) indicates that the diffusion coefficient of the A or
B particles decreases more strongly with increase in the volume fraction than when the large
catalytic sphere is absent. In our model the chemical reaction is a simple relabelling process
from A to B with probability pR upon collision with the catalytic sphere. Since the A and B
particles are mechanically identical the diffusive motion is independent of the species label.
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Figure 2. The large catalytic sphere (black) surrounded by obstacle spheres (light grey) for a volume
fraction φ = 0.15. Obstacle spheres in half of the volume are shown in order to see the embedded
catalytic sphere. None of the small A or B molecules are shown. They fill the interstices between
the obstacles.

Consequently, any change in the diffusion coefficient must be attributed to the configuration
and volume fraction of obstacles with the catalytic sphere present.

Our simulations were carried out using periodic boundary conditions; therefore, the finite-
size systems we study consist of a periodic array of catalytic spheres whose volume fraction
is φC. An approximate analytical expression for the diffusion coefficient, DC (φC), of small
molecules in a cubic array of spherical scatterers has been determined [38]. The result has
the same general form as that given in equation (4) with the catalytic sphere volume fraction
φC replacing φ. This expression was derived under the assumption that the dynamics of the
small molecules is described a simple diffusion equation where no obstacles are present. In our
system, the spaces between the catalytic spheres are filled with obstacles and small diffusing
molecules. The effect of the obstacles can be accounted for by replacing D0 by the full
expression for D(φo) in equation (4), the diffusion coefficient in the presence of obstacles
with volume fraction φo, but without a catalytic sphere. Thus, the approximate expression for
the diffusion coefficient DC(φ) is

DC (φ) = D(φ − φC)
1 − φC

1 + φC/2
= D0

1 − φ + φC

1 + φ/2 − φC/2

1 − φC

1 + φC/2
, (5)

where we used the fact that φo = φ − φC. For the simulation conditions in figure 1 φC is very
small (φC ≈ 0.0335) and equation (5) is not able to describe the simulation results. However,
the presence of a large catalytic sphere can lead to structural ordering of the obstacles in its
vicinity and we now investigate this effect.

Figure 3 shows the local volume fraction φ(r) as a function of the distance from the centre
of the catalytic sphere for several values of the global obstacle volume fraction. As the global
volume fraction of obstacles increases strong deviations from uniformity appear giving rise to
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Figure 3. Local volume fraction, φ(r), as a function of the distance, r , to the centre of the catalytic
sphere. Squares circles and triangles represent the volume fraction for systems with φ = 0.30, 0.15,
and 0.05, respectively.

structural ordering near the catalytic sphere signalled by a peak in φ(r). As a consequence
of this structure, there is an increased local density of small particles in the vicinity of the
catalytic sphere surface and they remain trapped for longer periods of time for large values of
the obstacle volume fraction. This effect is not captured by the analytical model which assumes
a random distribution of obstacles.

4. Reactive dynamics in a field of obstacles

We now describe how the chemical reaction rate coefficient for the irreversible reaction
A+C → B+C which occurs when A particles encounter the catalytic sphere can be calculated.
The time dependent rate coefficient k f (t) for this reaction can be defined by the rate law,

d

dt
n̄ A(t) = −k f (t)nC n̄ A(t), (6)

where n̄ A(t) is the mean number density of species A at time t . For long times the rate
coefficient tends to the rate constant k f = limt→∞ k f (t).

For a single catalytic sphere (or a dilute suspension of catalytic spheres with number
density nC ) the result for k f (t) is well known if the field of A and B particles is described
by the diffusion equation,

∂n A(r, t)

∂ t
= DA∇2n A(r, t). (7)

The problem was solved by Smoluchowski [39, 40] for complete absorption of the A particles
on the catalytic sphere surface and by Collins and Kimball [41] for the ‘radiation’ boundary
condition,

4π Dσ̄ 2r̂ · (∇n A)(r̂σ̄C , t) = k0 f n A(r̂σ̄C , t). (8)

This boundary condition accounts for the presence of a boundary layer in the vicinity of the
sphere surface, for σC < r < σ̄C , where the continuum diffusion description breaks down.
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Figure 4. Plot of the time dependent rate constant k f (t) versus time for σC = 10, σ̄C = 11 and
φ = 0.15. The dot–dashed line is the prediction given by equation (9) when no obstacles are present.
The solid line again uses equation (9) but with the theoretical value of D(φ) given in equation (4),
while the dashed line uses the simulation value of D(φ) in the presence of the catalytic sphere given
in figure 1.

When the diffusion equation is solved subject to this boundary condition the time dependent
rate coefficient is given by [42]

k f (t) = k0 f kD

k0 f + kD
+ k2

0 f

k0 f + kD
exp

[(

1 + k0 f

kD

)2 D

σ̄ 2
C

t

]

erfc

[(

1 + k0 f

kD

)(
Dt

σ̄ 2
C

)1/2]

. (9)

Here kD = 4πσ̄C D is the rate constant for a diffusion-controlled reaction for a perfectly
absorbing sphere [39, 40]. The rate constant k0 f that characterizes the reactive process in
the boundary layer may be taken to be that given for binary collisions of A with the catalytic
sphere. For bounce-back collision dynamics of the A species with the catalytic sphere C , we
have

k0 f = pRσ 2
C

(
8πkBT

m

)1/2

. (10)

The time dependent rate coefficient tends to its asymptotic constant value k f = k0 f kD/(k0 f +
kD) as

k f (t) ∼ k f

(

1 + k0 f

k0 f + kD

σ̄C

(π Dt)1/2

)

. (11)

An example of the evolution of the time dependent rate coefficient to its asymptotic value
is plotted in figure 4 (open circles). There is a rapid fall from the initial value k0 f , followed by
a much slower approach to the constant asymptotic value k f . In this figure we also compare
the simulation results with three simple analytical approximations based on equation (9) which
neglect the presence of obstacles or include their effect through the volume fraction dependence
of the diffusion coefficient. The best fit to the data is obtained when the simulation value of
D(φ) which accounts for the presence of the large catalytic sphere is used in conjunction with
equation (9).

Another non-trivial effect of crowding appears in the value of the intrinsic rate constant
k0 f . In the simple model for this rate constant based on independent binary collisions with the
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Figure 5. Simulated rate constant k0 f (φ) as a function of volume fraction φ. The solid line plots
the change in the reaction probability p̄R(φ) due to obstacles in the vicinity of the catalytic sphere
surface. The horizontal dotted line is the binary collision estimate of k0 f given by equation (10).

catalytic sphere surface (equation (10)), k0 f is independent of the obstacle volume fraction. If
this quantity is computed from the initial decay of the A number density field that occurs in
one time unit, we find that k0 f depends on the volume fraction. This dependence is shown in
figure 5 where k0 f (φ) is plotted versus φ. This increase is due to a number of factors that have
their origin in the obstacle distribution in the vicinity of the catalytic sphere surface. Due to the
presence of obstacles, a reactive small particle could collide with the catalytic sphere more than
once in a unit time. In addition, due to the obstacle structural ordering near the sphere for high
volume fractions shown in figure 3, the local density of A particles is higher near the catalytic
sphere surface than in the bulk of the system. This is the larger of these two contributing effects.
Figure 6 plots the initial local density of A particles n A(r) versus r , the radial distance from
the catalytic sphere (solid lines). The variations in the initial A density track the changes in
the local volume fraction in figure 3. Since the initial rate computed in a unit time interval
is determined from equation (6) by dividing the initial rate of change of the A density by the
mean density of A, a rate constant larger than that predicted by equation (10) will be obtained.
For later times, as a result of the reaction A + C → B + C , there is a depletion of A in the
neighbourhood of the C as expected and this is shown in the figure (dotted lines).

These effects can be viewed as an increase the reaction probability pR that depends on
the volume fraction of obstacles5. If we write k0 f (φ) = p̄R(φ)σ 2

C(8πkBT/m)1/2 we can
examine the magnitude of this enhancement. The effective reaction probability p̄R(φ) is plotted
in figure 5 (right ordinate axis). The volume fraction dependent reaction probability is well
approximated by the form p̄R(φ) = pR(1 + cφα), where the exponent α ≈ 1.4 ± 0.1 and
c ≈ 2.0 ± 0.08. This functional form, with the same values of α and c, also fits the rate

5 The effect of increased A density at the catalytic sphere surface for large φ on the value of k0 f is similar to that
for high density hard sphere systems where the Enskog value of the intrinsic rate constant replaces the Boltzmann
value [42]. Here, however, the effect arises from the high density of the obstacles. In the absence of obstacles the small
molecules satisfy an ideal equation of state. The structure in the local density is induced by the structural ordering of
the obstacles for large φ.
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Figure 6. Radial density field of species A, n A(r), as a function of the distance, r , to the centre of
catalytic sphere at initial time (solid lines), and after 10 simulation time steps (dotted lines). Squares,
circles and triangles denote the radial density field for φ = 0.30, 0.15, and 0.05 respectively.

Figure 7. Plot of the asymptotic value of k f (φ) as a function of the obstacle volume fraction φ.
The solid and dashed lines are the theoretical estimates discussed in the text.

coefficient data for catalytic spheres with radii rC = 1, 2 and 5, as well as the results for
rC = 10 presented in figure 5.

The volume fraction dependence of the asymptotic value of the rate constant k f (φ) is
shown in figure 7. These results were obtained from a linear regression of the data for k f (t)
using the first 200 time steps of the simulation in order to avoid effects due to the use of periodic
boundary conditions on the system. As expected, the rate constant decreases with increasing φ,
consistent with the fact that the diffusion coefficient decreases as the obstacle volume fraction
increases. Equation (9) predicts that the asymptotic rate constant is given by

k f (φ) = k0 f (φ)kD(φ)

k0 f (φ) + kD(φ)
, (12)
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where the φ dependence of k0 f (φ) was discussed earlier and the φ dependence of kD(φ) arises
from D(φ) in this quantity. Using the simulation values of k0 f (φ) and kD(φ) determined above,
we plot this estimate for k f (φ) in figure 7 as the solid line. The dashed line is a similar estimate
but using equation (10) for k0 f ; the φ dependence of k0 f has only a small effect on the overall
rate constant since kD dominates. These expressions are able to fit the data for small volume
fractions but they are not quantitatively accurate for larger volume fractions.

While we have focused on the φ dependence of the rate constant for a single catalytic
sphere (or equivalently a dilute suspension of catalytic spheres) in a field of stationary obstacles
with high volume fraction, the investigation of the φ dependence of the rate constant for a dense
suspension of catalytic spheres is a problem that has been studied often [36, 38, 43–48]. It is
known that the rate constant is a non-analytic function of the volume fraction whose leading
order behaviour is given by [38, 43]

k f (φ) = k f

[

1 +
(

(k0 f )
3

(k0 f + kD)3
3φ

)1/2

+ · · ·
]

. (13)

The volume fraction dependence of the rate constant for a random distribution of catalytic
spheres has been simulated using MPC dynamics [36]. In this case the rate constant increases
with increasing volume fraction. This suggests that it is interesting to consider the effects of
inert obstacle crowding on systems with high densities of catalytic molecules.

5. Conclusion

Diffusive and reactive rate processes involving small molecules occur at different rates in
crowded and simple environments. While some of the qualitative effects due to crowding
are easily anticipated—for example, the reduction of the diffusion coefficient as the volume
fraction of obstacles increases—theories that quantitatively predict the magnitudes of the
changes in transport properties as a function of the degree of crowding are largely still lacking.
Even for the simple, highly idealized situations considered in this paper, there are few known
results against which theories can be tested and trends due to crowding can be explored.

These factors have motivated our simulations of transport in crowded systems. While
is possible to study these effects using full molecular dynamics methods, it would require a
very large computational effort to carry out such simulations on the systems investigated in
this paper. In our systems with volume V = (50)3 and a large volume fraction φ = 0.3 of
obstacles, there are approximately 104 obstacles and 2 × 105 small molecules. For systems
with V = (100)3 these numbers are eight times larger. It is a lengthy task to carry out a
full molecular dynamics study on systems of this size for the long times needed to determine
the rate constant. The use of the mesoscopic multiparticle collision model has allowed us to
compute the diffusion and reaction rate transport coefficients for various degrees of crowding
in an efficient manner. Our simulation results can be used to test theoretical models and have
yielded insight into the effects of crowding on the transport properties of small molecules.

For the diffusion of small molecules in a random distribution of identical spherical
obstacles, the theoretical expression for D(φ) in equation (4) is able to quantitatively describe
the simulation results. However, the presence a large catalytic sphere among the array of
obstacles leads to quantitative changes in the volume fraction dependence of the diffusion
coefficient. These changes probably arise from obstacle density inhomogeneities in the vicinity
of the catalytic sphere surface.

The rate constant has contributions that arise from both reaction-limited events involving
molecules near the catalytic sphere surface and a diffusion-limited events that depend on how
molecules diffuse from the bulk to the catalytic sphere surface. The reduction of the reaction
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rate as φ increases can be attributed to the decrease of D(φ) with φ since the diffusion-limited
contribution to the rate constant is kD(φ) = 4πσ̄C D(φ). The reaction-limited rate constant
also depends on φ due to obstacle structural ordering near the catalytic sphere. The situation
is different if there are many catalytic spheres since the rate constant increases with increase
in the volume fraction of catalytic spheres. Theoretical models that accurately describe the
dependence of D(φ) and k f (φ) for high volume fractions of obstacles and catalytic spheres
remain to be constructed.

In this paper we focused on small molecule dynamics in crowded environments. Even this
simple case can provide useful information to help understand the nature of the dynamics of
small molecules in crowded environments like the cell. The techniques introduced here can be
extended to allow for obstacles of various sizes, dynamics of the obstacles and studies of large
molecule dynamics among obstacles.
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Universidad Nacional Experimental del Táchira, and in part by the grant I-886-05-02-A from
Consejo de Desarrollo Cientı́fico Humanı́stico y Tecnológico of Universidad de Los Andes.

References

[1] Goodsell D S 1991 Trends Biochem. Sci. 16 203
[2] Fulton A B 1982 Cell 30 345
[3] Record T M Jr, Courtenay E S, Caley S and Guttman S J 1998 Trends Biochem. Sci. 23 190
[4] Laurent T C 1995 Biophys. Chem. 57 7
[5] Zimmerman S P and Minton A P 1993 Annu. Rev. Biophys. Struct. 22 27
[6] Minton A P 2001 J. Biol. Chem. 276 10577
[7] Luby-Phelps K, Castle P E, Taylor D L and Lanni F 1987 Proc. Natl Acad. Sci. USA 84 4910
[8] Gersohn N D, Porter K R and Trus B L 1985 Proc. Natl Acad. Sci. USA 82 5030
[9] Schnell S and Turner T E 2004 Prog. Biophys. Mol. Biol. 85 235

[10] Hall D and Minton A P 2003 Biochim. Biophys. Acta 1649 127
[11] Eggers D K and Valentine J S 2001 Protein Sci. 10 250
[12] van den Berg B, Ellis R J and Dobson C M 1999 EMBO J. 18 6927
[13] Ellis R J and Hartl F-U 1999 Curr. Opin. Struct. Biol. 9 102
[14] Zimmerman S B and Trach S O 1991 J. Mol. Biol. 222 599
[15] Zhou H-X 2004 J. Mol. Recognit. 17 368
[16] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[17] Malevanets A and Kapral R 2000 J. Chem. Phys. 112 7260
[18] Malevanets A and Kapral R 2003 Mesoscopic multi-particle collision model for fluid flow and molecular

dynamics Novel Methods in Soft Matter Simulations ed M Karttunen, I Vattulainen and A Lukkarinen (Berlin:
Springer) p 113

[19] Ihle T and Kroll D M 2001 Phys. Rev. E 63 020201
[20] Lamura A, Gompper G, Ihle T and Kroll D M 2001 Europhys. Lett. 56 768
[21] Lamura A, Gompper G, Ihle T and Kroll D M 2001 Europhys. Lett. 56 319
[22] Kikuchi N, Pooley C M, Ryder J F and Yeomans J M 2003 J. Chem. Phys. 119 6388
[23] Lee S H and Kapral R 2004 J. Chem. Phys. 121 11163
[24] Lee S H and Kapral R 2005 J. Chem. Phys. 122 214916
[25] Malevanets A and Yeomans J M 2000 Europhys. Lett. 52 231
[26] Ripoll M, Mussawisade K, Winkler R G and Gompper G 2004 Europhys. Lett. 68 106
[27] Winkler R G, Mussawisade K, Ripoll M and Gompper G 2004 J. Phys.: Condens. Matter 16 S3941
[28] Winkler R G, Ripoll M, Mussawisade K and Gompper G 2005 Comput. Phys. Commun. 169 326
[29] Mussawisade K, Ripoll M, Winkler R G and Gompper G 2005 J. Chem. Phys. 123 144905
[30] Malevanets A and Yeomans J 2000 Europhys. Lett. 52 231

11

http://dx.doi.org/10.1016/0968-0004(91)90083-8
http://dx.doi.org/10.1016/0092-8674(82)90231-8
http://dx.doi.org/10.1016/S0968-0004(98)01207-9
http://dx.doi.org/10.1016/0301-4622(95)00048-3
http://dx.doi.org/10.1146/annurev.bb.22.060193.000331
http://dx.doi.org/10.1074/jbc.R100005200
http://dx.doi.org/10.1073/pnas.84.14.4910
http://dx.doi.org/10.1073/pnas.82.15.5030
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.012
http://dx.doi.org/10.1110/ps.36201
http://dx.doi.org/10.1093/emboj/18.24.6927
http://dx.doi.org/10.1016/S0959-440X(99)80013-X
http://dx.doi.org/10.1016/0022-2836(91)90499-V
http://dx.doi.org/10.1002/jmr.711
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.481289
http://dx.doi.org/10.1103/PhysRevE.63.020201
http://dx.doi.org/10.1209/epl/i2001-00586-5
http://dx.doi.org/10.1209/epl/i2001-00522-9
http://dx.doi.org/10.1063/1.1603721
http://dx.doi.org/10.1063/1.1815291
http://dx.doi.org/10.1063/1.1924505
http://dx.doi.org/10.1209/epl/i2000-00428-0
http://dx.doi.org/10.1209/epl/i2003-10310-1
http://dx.doi.org/10.1088/0953-8984/16/38/012
http://dx.doi.org/10.1016/j.cpc.2005.03.073
http://dx.doi.org/10.1063/1.2041527
http://dx.doi.org/10.1209/epl/i2000-00428-0


J. Phys.: Condens. Matter 19 (2007) 065146 C Echeverı́a et al

[31] Ali I, Marenduzzo D and Yeomans J M 2004 J. Chem. Phys. 121 8635
[32] Kikuchi N, Gent A and Yeomans J M 2002 Eur. Phys. J. E 9 63
[33] Hashimoto Y, Chen Y and Ohashi H 2000 Comput. Phys. Commun. 129 56
[34] Inoue Y, Chen Y and Ohashi H 2002 Colloids Surf. A 201 297
[35] Sakai T, Chen Y and Ohashi H 2002 Phys. Rev. E 65 031503
[36] Tucci K and Kapral R 2004 J. Chem. Phys. 120 8262
[37] Tucci K and Kapral R 2005 J. Phys. Chem. B 109 21300
[38] Lebenhaft J and Kapral R 1979 J. Stat. Phys. 20 25
[39] von Smoluchowski M 1915 Ann. Phys. 48 1003

von Smoluchowski M 1916 Phys. Z. 17 557
[40] von Smoluchowski M 1917 Z. Phys. Chem. 92 129
[41] Collins F C and Kimball G E 1949 J. Colloid Sci. 4 425
[42] Kapral R 1981 Adv. Chem. Phys. 48 71
[43] Felderhof B U and Deutch J M 1976 J. Chem. Phys. 64 4551
[44] Felderhof B U, Deutch J M and Titulaer U M 1982 J. Chem. Phys. 76 4178
[45] Felderhof B U and Jones R B 1995 J. Chem. Phys. 103 10201
[46] Gopich I V, Kipriyanov A A and Doktorov A B 1999 J. Chem. Phys. 110 10888
[47] Felderhof B U and Jones R B 1999 J. Chem. Phys. 111 4205
[48] Gopich I V, Berezhkovskii A M and Szabo A 2002 J. Chem. Phys. 117 2987

12

http://dx.doi.org/10.1063/1.1798052
http://dx.doi.org/10.1016/S0010-4655(00)00092-8
http://dx.doi.org/10.1016/S0927-7757(01)01041-X
http://dx.doi.org/10.1103/PhysRevE.65.031503
http://dx.doi.org/10.1063/1.1690244
http://dx.doi.org/10.1021/jp052701u
http://dx.doi.org/10.1007/BF01013745
http://dx.doi.org/10.1016/0095-8522(49)90023-9
http://dx.doi.org/10.1063/1.432087
http://dx.doi.org/10.1063/1.443494
http://dx.doi.org/10.1063/1.469923
http://dx.doi.org/10.1063/1.479001
http://dx.doi.org/10.1063/1.479719
http://dx.doi.org/10.1063/1.1490585

	1. Introduction
	2. Mesoscopic dynamics in crowded environments
	3. Diffusion in a field of obstacles
	4. Reactive dynamics in a field of obstacles
	5. Conclusion
	Acknowledgments
	References

