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Abstract. The phenomenon of synchronization occurring in coupled chaotic maps on a
directed random network is studied. The network is characterized by the average degree of
its nodes and the fraction of directed links. It is found that the required coupling strength
so that the chaotic synchronization emerges is smaller when the fraction of directed links is
increased. In addition, the system undergoes a transition from an asynchronous phase to a
synchronous one at some critical values of its parameters. The critical boundary separating the
synchronous from the asynchronous regime is calculated on the parameter space of the system,
given by the coupling strength and the fraction of directed links of the network. The phase
transition between the two regimes is of second order for all values of the fraction of directed
links, and the critical exponent depends of it.

The phenomenon of chaotic synchronization in dynamical networks is a well studied[1, 2, 3, 4].
There are many papers where dynamical units are defined on a undirected[5, 6], directed[7, 8] and
complex[9, 10] networks. This phenomenon was also been studied by using continuous[11, 12] and
discrete[13, 14] chaotic local dynamics. It is known that collective behavior of a system depends
on properties of the substrate over which the dynamic takes place[15, 16]. In this paper, we
explore how the directed links of the network affect the phenomenon of chaos synchronization.
We consider a system of chaotic coupled maps defined on Erdös-Rényi random networks[17] of
size N with a mean degree of links per node k̄, and a fraction q of directed links. We show
that there is a phase transition between chaotic spatiotemporal and synchronized phases, at a
critical value of the parameter measuring the coupling strength between the units. This critical
value of the coupling decreases when the fraction of directed links increases, and additionally
the critical exponent of the transition also decreases.

Networks can be represented by their adjacency matrix M, whose elements mij are given by

mij =

{
1 if there is a link from node i to node j
0 elsewhere

, i, j = 1, 2, . . . , N . (1)

The fraction of directed links q is defined as

q = 1−
∑
ijmijmji∑
ijmij

, i, j = 1, 2, . . . , N . (2)

Let us consider a diffusively coupled map system on a connected random network with
N = 104 nodes, described by

xit+1 = (1− ε)f(xit) +
ε

ki

∑
j∈νi

f(xjt ) , i = 1, 2, . . . , N ; (3)
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where, xit is the state of the ith element at discrete time t, ε is the coupling strength, νi is the
set of neighbors of the ith element, ki is the cardinality of νi, and f(xt) is a chaotic map that
expresses the local dynamics. The mean degree of the network is given by

k̄ =
1
N

N∑
i=1

ki , (4)

We set k̄ = 9. The local dynamic is given by the logarithmic map[18, 19],

f(x) = b+ ln(x) , (5)

where b is the map parameter. We fix the parameter b = −0.7, that is, in the region where
the map presents a robust chaotic regimen; The initial conditions are randomly chosen in the
interval [−10; 10].

The synchronized state is characterized by the asymptotic time-average 〈σ〉 of the
instantaneous standard deviations σt of the distribution of map variables xit , defined as

σt =

[
1
N

N∑
i=1

(xit − 〈xt〉)2
]1/2

, (6)

where 〈xt〉 is the instantaneous mean of the values xit. We discard the first t = 104 iterations
and perform the time-average using the next 1000 iterates.

Figure 1 shows the asymptotic time-average of the instantaneous standard deviations 〈σ〉 as
a function of the coupling strength ε and the fraction of directed links q.
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Figure 1. Asymptotic time-average of the
instantaneous standard deviations 〈σ〉 as a
function of the strength coupling ε and the
fraction of directed links q; with N = 104

and k̄ = 9. All points are averaged over 6
realizations.
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Figure 2. Asymptotic time-average of
the instantaneous standard deviations 〈σ〉
as a function of the strength coupling ε.
Squares q = 0.1, circles q = 0.5 and
triangles q = 0.9. The continuous lines
represent the fit of the equation (7) close
to εc.
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Note that, when the coupling strength ε increases, there is a transition in the system from
a chaotic spatiotemporal (〈σ〉 > 0) to a synchronized (〈σ〉 = 0) phase. In figure 2 it is shown
the asymptotic time-average of the instantaneous standard deviations 〈σ〉 as a function of the
coupling strength ε with q = 0.1, q = 0.5 and q = 0.9.

The variation of the order parameter 〈σ〉 near the critical value of coupling strength εc can
be characterized by a critical exponent β as

〈σ〉 = (εc − ε)β . (7)

We have calculated numerically the critical values of the coupling strength εc for the onset of
synchronization in directed random network. The continuous lines in Figure 2 are the fitting of
equation (7) for the given values of q.

Figure 3 shows the resulting critical boundary εc for the transition from chaotic
spatiotemporal to synchronized regime, as well as the phase diagram of the system in the
parameter space (ε, q).
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Figure 3. Phase diagram in the parameter
space (ε, q). The numerically calculated
critical boundary εc is shown with its error.
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Figure 4. Numerically calculated critical
exponent β as a function of q with a typical
error bar.

Note that the critical value of the coupling strength εc defines a boundary in the phase
diagram (ε, q) between the two regimes. Also, it can appreciate that the strength coupling
necessary to synchronize the system is smaller when the fraction of directed links is increased.

Finally, Figure 4 shows the relation between the critical exponent β and the fraction of
directed links q. It can see that, as q increases, the exponent β becomes smaller and the
corresponding phase transition from spatiotemporal chaos to synchronized behavior gets more
abrupt.

In summary, we have studied how the directed links affect the synchronization phenomenon
on a Erdös-Rényi random networks. Although we use one class of networks and a simple dynamic
for the nodes, we expect that the essential properties of the transition between synchronized-
chaotic spatiotemporal phases is captured by this model.

By varying the fraction of directed links in the random networks, the behavior of the transition
to synchronization can be studied in the regime between undirected lattices and completely
directed random networks. The critical boundary separating synchronous and spatiotemporal
chaos regimes was calculated on the parameter space (ε, q) of the system. We have found that
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the character of this transition is always of second order, that is, the critical exponent that
characterize the transition is in the interval β ∈ (0, 1) for all values of fraction of directed links
q. The form how a phenomena appear depends on properties of the substrate over which the
dynamic is carried out.

In this case, the spatiotemporal chaos-synchronous phase transition on a Coupled Chaotic
Maps Lattice depends of the fraction of directed links of the network. In order to the
synchronization phenomenon arises in the system, a smaller coupling strength, ε, is required
when the fraction of directed links of the network, q, increases; and the phase transition becomes
sharper.
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