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Turbulence in small-world networks
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The transition to turbulence via spatiotemporal intermittency is investigated in the context of coupled maps
defined on small-world networks. The local dynamics is given by the ‘@Wateneville minimal map previ-
ously used in studies of spatiotemporal intermittency in ordered lattice. The critical boundary separating
laminar and turbulent regimes is calculated on the parameter space of the system, given by the coupling
strength and the rewiring probability of the network. Windows of relaminarization are present in some regions
of the parameter space. New features arise in small-world networks; for instance, the character of the transition
to turbulence changes from second-order to a first-order phase transition at some critical value of the rewiring
probability. A linear relation characterizing the change in the order of the phase transition is found. The global
quantity used as order parameter for the transition also exhibits nontrivial collective behavior for some values
of the parameters. These models may describe several processes occurring in nonuniform media where the
degree of disorder can be continuously varied through a parameter.
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[. INTRODUCTION works with a high degree of local clustering and a small
characteristic length between any two elements. It has been
A general scenario for the appearance of turbulence ishown that small-world networks describe many natural and
extended systems is spatiotemporal intermittency, i.e., a sugtificial networkg 15]. By varying a parameter, small-world
tained regime characterized by the coexistence of coherenfetworks can be continuously tuned between ordered, deter-
laminar and disordered-chaotic domains in space and tim@unistic lattices and completely random networks. In this
[1,2]. Some of the most extensive investigations of this phefaper, we consider coupled maps defined on small-world net-
nomenon have been based on model dynamical systems sué¢rks as spatiotemporal dynamical systems. We study the
as coupled map lattic§2—6]. The idea is that the ingredi- nature of the transition to turbulence and the properties of
ents of such models—a discrete space, discrete time systepatiotemporal intermittency on these networks. We explore
of interacting elements whose states vary continuously adhe changes induced in those processes as a result of the
cording to specific functions—are sufficient to capture muchvariation in the connection topology of the interactions in the
of the phenomenology observed in complex spatiotemporadystem.
processes, in particular some relevant features of spatiotem- In Sec. I, a general coupled map lattice model for the
poral intermittency and turbulence. In this respect, coupledreatment of small-world networks is presented. The transi-
map systems can be considered as mathematically simpléPn to turbulence in coupled maps on small-world networks
and computationally more efficient models than partial dif-is investigated in Sec. Ill. The site map model that we em-
ferential equations of hydrodynami§g]. The transition to  Ploy is based on the one introduced earlier by Clete
turbulence via spatiotemporal intermittency has mainly beefanneville for regular Euclidean lattices in one and two di-
investigated in networks of coupled maps where the connednensiong3], and which captures the essential features of the
tivities between elements are defined from deterministidransition to turbulence in extended systems. Section IV con-
rules that provide order to their Spatia| structure. There aréains the observations of nontrivial collective behavior aris-
examples of such studies in Euclidean lattif2s 6], fractal ~ ing in the system. Conclusions are given in Sec. V.
geometrie$8], and treelike arrayg9], as well as on globally
coupled systemglLO]. These investigations have allowed the
characterization of the transition to turbulence as a critical
phenomenon in a range of Euclidean and fractal dimensions There are several ways to construct a small-world net-
and on several connection topologies. work. In this paper we employ the small-world network con-
Because of their discrete spatial nature, coupled map systruction algorithm originally proposed by Watts and Stro-
tems seem especially appropriate for investigating physicajatz[11]. We start from a ring oN sites, where each site is
phenomena occurring in heterogeneous or disordered medieonnected to it& nearest neighborg,being an even number.
Recently, intensive and interesting research has been peFhen each connection is rewired at random with probability
formed on the theory and applications of small-world net-p to any other site of the network, to avoid self-connections.
works [11-14. Small-world networks are a class of net- After the rewiring process, the number of elements coupled
to each sitgwhich we call neighbors of that sjtenay vary,
but the total number of links in the network is constant and
*Electronic address: mcosenza@ciens.ula.ve equal toNk/2. It is assumed that all links are bidirectional.
"Electronic address: kay@ula.ve Although this algorithm does not guarantee that the resulting

II. COUPLED MAPS ON SMALL-WORLD NETWORKS
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graph is connected, we have used only connected ones for 1T
our calculations. (F)=< > Fy. )
The state of each site on the network can be assigned a t=1
continuous variable, which evolves according to a determin-
istic rule depending on its own value and the values of itsThus(F)=0 describes a laminar state atid) < (0,1] cor-
connecting elements. We define a coupled map lattice dyresponds to a turbulent state of the network. Random initial

namical system on a small-world network as conditions were used in all runs with given parameter values
of the systent1). About 1¢} iterations were discarded before
€ taking the time average in E¢3) and T was typically taken
Xt+1(i)=f[Xt(i)]+m j 25‘,0) {FIx(D]—fIx()]}, at the value 181 Increasing the averaging timieor the net-

(1) work sizeN does not have appreciable effects on the results.
It should be noticed that a minimum number of initially tur-
bulent sites is always required to reach a sustained state of

wherex(i) gives the state of the site(i=1,2,... N) at  { bulence.

discrete timet; k(i) is the number of neighbors or elements Figure 1 showsF) as a function ofe for different fixed

connected to sitg S(i) is the set of neighbors of sitee is | 5yes of the probability in a typical small-world network
a parameter measuring the coupling strength between cotyjith nearest neighbor numbér=10 and sizeN=10%. The
nected sites., anti(x) is a nonlinear function describing the 4(or bars shown ofF) correspond to plus and minus the
local dynamics. . . standard deviationa(F) (square root of the variangef the

. The above coup_led map equations can be generahzed tne series ofF, at each value of the coupling parameter
include other coupling schemes or continuous time local dyWe have verified, by doing 25 realizations of the rewiring
namics. Different spatiotemporal processes can be studied (B?ocess described in Sec. I, that fluctuations/Bj and on

small-world structures by providing appropriate local dy'A(F) due to different configurations of the networks are not
namics and couplings.

significant.
Figures 1a)—(d) show that, for a fixed value df, there is
[1l. TRANSITION TO TURBULENCE IN SMALL-WORLD a critical value of the coupling. at which the transition
NETWORKS from a laminar state to turbulence occurs. For small values of

. ) ) . p [Fig. 1(a)], a regime of relaminarization of the system takes
The phenomenon of spatiotemporal intermittency in €X-pjace on an interval of the coupling parameter after a win-

tended systems consists of a sustained regime where cohefsy of turbulence. The relaminarization gap disappears with
ent and chaotic domains coexist ar.1d' evolve in space a”ﬂcreasingp, leaving a dip in thF) curve, as seen in Fig.
time. A local map possessing the minimal requirements fo ) For small values o the transition to turbulence, as the
observing spatiotemporal intermittency in coupled map sySgqypling is varied, takes place continuously, similarly to a
tems is[3] second-order phase transition. pds increased, the transi-
tion becomes progressively steeper until it happens discon-
tinuously, as in a first-order phase transition. There exists a
) critical value of the probabilityp.~0.55 at which the char-
acter of the transition to turbulence changes from a second-
order phase transitiofFigs. 1a and 1b)] to a first-order
phase transitiofiFigs. 1c) and 1d)].
with r>2. This map is chaotic fof(x) in [0,1]. However, In Figs. 2a) and 2(b) we show the mean turbulent frac-
for f(x)>1 the iteration is locked on a fixed point. The local tion (F) and its standard deviatiak(F) plotted as functions
state can thus be seen as a continuum of stable “laminardf both p and e. Figure 2Za) shows that the transition to
fixed points &>1) adjacent to a chaotic repeller or “turbu- sustained turbulence occurs on a critical curve on the param-
lent” state ke[0,1]). eter plane [, €). The variation in the nature of this transition
In ordered, deterministic networks, the turbulent state camlong this critical curve ap increases can clearly be appre-
propagate through the lattice in time for a large enough coueiated in Fig. 2a). Typical statistical deviations are seen for
pling, producing sustained regimes of spatiotemporal intersmall values ofp and € in Fig. 2(b); however, this figure
mittency. Here, we investigate the phenomenon of transitiomeveals very large fluctuations in the instantaneous turbulent
to turbulence in small-world networks using the local niap fraction occurring for larger values of those parameters, and
[Eqg. (2)] in the coupled system described by Ed). The  which can also be observed as the “bulbs” in Figéc)land
local parameter is fixed at the value=3 in all the calcula- 1(d). As it shall be discussed in the following section, this
tions. As in ordered networks, the transition to the extendeghhenomenon is associated with the emergence of nontrivial
turbulent state can be characterized through the averagmllective behavior in the system.
value of the instantaneous fraction of turbulent sigs a We have numerically calculated the critical values of the
quantity that acts as the order parameter for the sy$8m coupling €. for the onset of turbulence in small-world net-
We have calculatedF) as a function of various parameters works with fixedk= 10 as a function of their rewiring prob-
of the system from a time average of the instantaneous tuability p. Figure 3 shows the resulting critical boundary
bulent fractionF, as e.(p) for the transition to turbulence, as well as the phase

r .
f(x)= 5(1=[1=2x]), i xe[0.]]

X, if x>1,
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FIG. 1. Mean turbulent fractiofF) as a function of the coupling for small-world networks wittk=10 andN=10"*. The error bars
indicate =1 standard deviationga) p=0, (b) p=0.17,(c) p=p.=0.55, and(d) p=0.80.

diagram of the system, on the parameter plapgeX. The  show the resulting graphs ¢f as a function op for several
critical coupling valuee. increases as the disorder in the gma|l-world networks characterized by their neighbor num-
network, described by the probability grows. The critical  perk. In each case, the dependence of the expofesith p
boundary curvesc(p_) corresponds to a continuous, se_cond-is well accounted by the linear relatigg= h(p.—p), where
order phase transition fqy<p.=0.55 and to a discontinu- the slopeh varies withk. As p increases, the exponefk

ous, fwst-prder transition fop> Pc. Figure 3 Indicates with ecomes smaller and the corresponding phase transition from
a dotted line where the first maximum of the mean turbulent_~ "~ - .
aminarity to turbulence gets more abrupt. The change in the

fraction(F) occurs on the parameter plane. This line of firStcharacter of the transition from second order to first order
maxima of(F) crosses the critical boundary separating the .
hould occur at the valup=p, for which the exponeng

laminar and the turbulent states of the system at the valug"®! _ . .
p=p., and the character of the phase transition changes yanishes. Figure 4 shows the extrapolation of the straight

this point. The relaminarization gap is also indicated on thein€ corresponding to the small-world network wikt=10
plane @, e). until its intersection _Wlth th_ep axis, _predlctmg a critical
For values of the probabilitp<p., where a continuous valuep.=0.55. This, in fact, is the critical value of the prob-
transition from a laminar regime to turbulence occurs, theability at which the change in the character of the transition
variation of the order parametéF) near the critical curve o turbulence for this network was observed in Fige),1
can be characterized by a critical exponghtas (F)~(e  2(&), and 3. We recall that the measure of the characteristic
— €.)P. For fixedp, the exponenp can be calculated from a path length for the family of small-world networks with
log-log plot of (F) vs (e—€.). The critical exponeng var- =10 drops to small values typically associated with a ran-
ies continuously with the rewiring probabilify In Fig. 4 we  dom network when the rewiring probability is about 0.55
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FIG. 4. Critical exponeng for the second-order phase transtion
as a function of the rewiring probabilitp. k=4 (squares k=6
(circles; k=10 (triangles; andk=20 (pentagons

seems to characterize the transition to turbulence via spa-
tiotemporal intermittency in small-world networks. Further-
more, Fig. 4 predicts that no critical valyg.<1 can be
found in the casé&=4, and thus the transition to turbulence

[11]. Thus the critical valug,=0.55 found for the emer- in a small-world network with neighbor numbk# 4 should

gence of the first order phase transition should be related tBCCUr continuouslysecond ordgrfor any p, and should al-

the onset of randomness in the network. In fact, it has reWays possess a critical expongsit-0. This prediction was

cently been reported that the transition from laminarity to@!SC verified numerically. o »

turbulence in randomly coupled map networks can occur dis- Fi9ure 5 shows the predicted critical probability valygs

continuously[16]. as a function ofk. Note thatp, decreases rapidly with in-
By extrapolating the different lines, one can get predic-Créasing neighbor n_um_bekr Th(_e characteristic path length

tions of the critical probabilitiep, for different values ok, Pecomes smaller with increasirig[11] and, consequently,

We have numerically verified these critical valygsfor sev- the connectivity of_ th_e small-world network approaches the

eral small-world networks possessing different neighbof@!-to-all coupling limit of a globally coupled system, where

numbersk. Thus the linear relation that arises from Fig. 4 the transition to turbulence is always a first-order phase tran-
sition [10]. In globally coupled systems, the absence of spa-

tial relations excludes the possibility of supporting small do-

FIG. 2. (8) Mean turbulent fractiodF) as a function op ande.
(b) Standard deviatiol\(F) as a function ofp and e. Network
parameters ark=10 andN=10".

1.0 .
' R ' mains of turbulent maps that would be necessary for a
S - period-two continuous transition to turbulence. The decrease in the value
08  TURBULENT e - of p. observed in Fig. 5 means that the networks need less
] disorder for achieving a first-order phase transition to turbu-
‘\__ quasiperiodic
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FIG. 3. Phase diagram of the systéh. The critical boundary

separating laminar and turbulent regimes is shown with a continu-
ous line. Thin line: second-order phase transition; thick line: first-
order phase transition. The dotted line indicates the locus of the firs:
maxima of(F) on the parameter plane. The regions of nontrivial

collective behavior are bounded by dashed lines.
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1 T T T T parameters. This feature corresponds to a phenomenon of
(a) nontrivial collective behavior already observed in the tempo-
ok ] ral evolution of the mean field of several chaotic extended
’ systemdg17]. The quantityF, is a simpler statistical descrip-
tion than the mean field and, in this case, it already manifests
osk - a nontrivial collective behavior of the system over long
Fon times. _
The two regions on the parameter plane where states of
07 - 1 nontrivial collective behavior appear are indicated within the
turbulent zone in the phase diagram of Fig. 3. Note that the
s b . i emergence of nontrivial collective behavior occurs for large
’ enough coupling and an appreciable degree of disorder,
which itself implies a small characteristic length between
05 1 1 1 1 any two elements in the network. Thus, as both the amount
06 07 08 09 1 of short cuts and the coupling strength between different
F parts of the network increase, the information transfer re-
1 ey T quired for the emergence of collective behavior is more
(b) Ty likely to occur.
oo b i Nontrivial collective oscillations in the turbulent phase of
’ coupled map systems have also been observed in high-
dimensional Euclidean latticd48], fractal lattices[8], as
0.8 b well as in globally coupled magd4.0]. Our results for small-
Fon vyorld networks show that ordere_d connecFions are not essen-
tial for the occurrence of nontrivial collective behavior.
0.7 -
s L i V. CONCLUSIONS
We have investigated a coupled map model for the tran-
05 ; | ; | sition to turbulence via spatiotemporal intermittency in
0.6 0.7 0.8 0.9 1 small-world networks. Although the local dynamics is
F simple, we expect that the essential properties of the transi-

FIG. 6. Return maps of the instantaneous turbulent fraction for athn to twrbulence in smgll-world §tructures Is captured by
small-world network withk=10, N=10¢, and p=0.80. (8 e  this model. Coupled Chatlanneville maps could be re-
=0.67 and(b) e=0.85. garded as a crude description of the dynamics of an excitable
medium. The system of coupled maps on small-world net-
lence if their neighbor numbek is sufficiently large. This  works can also be used to study different spatiotemporal dy-
reflects the fact that networks with large enolkgire already  namical processes on these structures by providing appropri-
closer to global coupling, and therefore they require less reate local maps or couplings.
wiring to behave statistically similar to globally coupled sys- By varying the rewiring probability in small-world net-
tems. works, the behavior of the transition to turbulence can be
studied in the regime between ordered lattices and com-
IV. NONTRIVIAL COLLECTIVE BEHAVIOR pletely random networks. The critical boundary separating
the laminar and the turbulent regimes was calculated on the
In contrast to the usually expected statistical behavior, thgparameter planep( €) of the system. We have found that the
large amplitudes of the standard deviations observed ooharacter of this transition changes progressively from a
some regions of the parameter plane€) in Fig. 2b) do  second-order phase transition to a first-order phase transition
not diminish with increasing system size or with longer av-as the disorder in the network, measured by the rewiring
eraging time. These large fluctuations of a statistical quantityrobability, is increased. The critical value of the rewiring
indicate the presence of collective motions of the system. Foprobability for the onset of the first-order phase transition
example, Fig. 6 displays the return maps of the instantaneousas predicted from the scaling behavior observed in the criti-
turbulent fractionF, for two different values of the coupling cal exponeniB for small values of the probability. Addition-
corresponding to the two “bulbs” observed in FigdL Fig-  ally, we have been able to calculate the critical values of the
ure §a) shows a quasiperiodic orbit in the dynamicsmefin  rewiring probability as a function of the number of initial
the first bulb, while Fig. &) reveals a collective period-two nearest neighbor in small-world networks.
motion occurring in the second bulb of FigidL The large Discontinuous transition to turbulence and nontrivial col-
fluctuations measured b¥(F) reflect the amplitude of the lective behavior in the turbulent regime are characteristic
collective oscillations of; that emerge in those regions of features of globally coupled magp$0]. These same collec-
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tive properties emerge in small-world networks as their retion of clusters of synchronized elemepi®)], could also be
wiring probability is increased. Because of the ubiquity of observed in small-world networks.

small-world networks in nature and in human-made struc-

tures, we may expect to see nontrivial collective behaviors ACKNOWLEDGMENT
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