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Turbulence in small-world networks

M. G. Cosenza1,* and K. Tucci2,†

1Centro de Astrofı´sica Teo´rica, Universidad de Los Andes, Apartado Postal 26, La Hechicera, Me´rida 5251, Venezuela
2SUMA-CeSiMo, Universidad de Los Andes, Me´rida 5251, Venezuela

~Received 28 August 2001; published 1 March 2002!

The transition to turbulence via spatiotemporal intermittency is investigated in the context of coupled maps
defined on small-world networks. The local dynamics is given by the Chate´-Manneville minimal map previ-
ously used in studies of spatiotemporal intermittency in ordered lattice. The critical boundary separating
laminar and turbulent regimes is calculated on the parameter space of the system, given by the coupling
strength and the rewiring probability of the network. Windows of relaminarization are present in some regions
of the parameter space. New features arise in small-world networks; for instance, the character of the transition
to turbulence changes from second-order to a first-order phase transition at some critical value of the rewiring
probability. A linear relation characterizing the change in the order of the phase transition is found. The global
quantity used as order parameter for the transition also exhibits nontrivial collective behavior for some values
of the parameters. These models may describe several processes occurring in nonuniform media where the
degree of disorder can be continuously varied through a parameter.
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I. INTRODUCTION

A general scenario for the appearance of turbulence
extended systems is spatiotemporal intermittency, i.e., a
tained regime characterized by the coexistence of coher
laminar and disordered-chaotic domains in space and
@1,2#. Some of the most extensive investigations of this p
nomenon have been based on model dynamical systems
as coupled map lattices@2–6#. The idea is that the ingredi
ents of such models—a discrete space, discrete time sy
of interacting elements whose states vary continuously
cording to specific functions—are sufficient to capture mu
of the phenomenology observed in complex spatiotemp
processes, in particular some relevant features of spatio
poral intermittency and turbulence. In this respect, coup
map systems can be considered as mathematically sim
and computationally more efficient models than partial d
ferential equations of hydrodynamics@7#. The transition to
turbulence via spatiotemporal intermittency has mainly b
investigated in networks of coupled maps where the conn
tivities between elements are defined from determini
rules that provide order to their spatial structure. There
examples of such studies in Euclidean lattices@2–6#, fractal
geometries@8#, and treelike arrays@9#, as well as on globally
coupled systems@10#. These investigations have allowed th
characterization of the transition to turbulence as a crit
phenomenon in a range of Euclidean and fractal dimens
and on several connection topologies.

Because of their discrete spatial nature, coupled map
tems seem especially appropriate for investigating phys
phenomena occurring in heterogeneous or disordered m
Recently, intensive and interesting research has been
formed on the theory and applications of small-world n
works @11–14#. Small-world networks are a class of ne
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works with a high degree of local clustering and a sm
characteristic length between any two elements. It has b
shown that small-world networks describe many natural a
artificial networks@15#. By varying a parameter, small-worl
networks can be continuously tuned between ordered, de
ministic lattices and completely random networks. In th
paper, we consider coupled maps defined on small-world
works as spatiotemporal dynamical systems. We study
nature of the transition to turbulence and the properties
spatiotemporal intermittency on these networks. We expl
the changes induced in those processes as a result o
variation in the connection topology of the interactions in t
system.

In Sec. II, a general coupled map lattice model for t
treatment of small-world networks is presented. The tran
tion to turbulence in coupled maps on small-world netwo
is investigated in Sec. III. The site map model that we e
ploy is based on the one introduced earlier by Chate´ and
Manneville for regular Euclidean lattices in one and two
mensions@3#, and which captures the essential features of
transition to turbulence in extended systems. Section IV c
tains the observations of nontrivial collective behavior ar
ing in the system. Conclusions are given in Sec. V.

II. COUPLED MAPS ON SMALL-WORLD NETWORKS

There are several ways to construct a small-world n
work. In this paper we employ the small-world network co
struction algorithm originally proposed by Watts and Str
gatz@11#. We start from a ring ofN sites, where each site i
connected to itsk nearest neighbors,k being an even number
Then each connection is rewired at random with probabi
p to any other site of the network, to avoid self-connectio
After the rewiring process, the number of elements coup
to each site~which we call neighbors of that site! may vary,
but the total number of links in the network is constant a
equal toNk/2. It is assumed that all links are bidirectiona
Although this algorithm does not guarantee that the resul
©2002 The American Physical Society23-1



s

ed
in
it
d

ts

co
e

d
dy
d
y-

ex
oh
a
fo
ys

al
a
-

ca
ou
te
tio
p

de
ra

rs
tu

itial
ues
e

lts.
r-
e of

e

g

ot

s of
es
in-
ith

.
e
a

-
on-

ts a

nd-

-

am-
n
e-
or

lent
and

is
ivial

he
t-
-
ry
se
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graph is connected, we have used only connected one
our calculations.

The state of each site on the network can be assign
continuous variable, which evolves according to a determ
istic rule depending on its own value and the values of
connecting elements. We define a coupled map lattice
namical system on a small-world network as

xt11~ i !5 f @xt~ i !#1
e

k~ i ! (
j PS( i )

$ f @xt~ j !#2 f @xt~ i !#%,

~1!

wherext( i ) gives the state of the sitei ( i 51,2, . . . ,N) at
discrete timet; k( i ) is the number of neighbors or elemen
connected to sitei; S( i ) is the set of neighbors of sitei; e is
a parameter measuring the coupling strength between
nected sites, andf (x) is a nonlinear function describing th
local dynamics.

The above coupled map equations can be generalize
include other coupling schemes or continuous time local
namics. Different spatiotemporal processes can be studie
small-world structures by providing appropriate local d
namics and couplings.

III. TRANSITION TO TURBULENCE IN SMALL-WORLD
NETWORKS

The phenomenon of spatiotemporal intermittency in
tended systems consists of a sustained regime where c
ent and chaotic domains coexist and evolve in space
time. A local map possessing the minimal requirements
observing spatiotemporal intermittency in coupled map s
tems is@3#

f ~x!5H r

2
~12u122xu!, if xP@0,1#

x, if x.1,

~2!

with r .2. This map is chaotic forf (x) in @0,1#. However,
for f (x).1 the iteration is locked on a fixed point. The loc
state can thus be seen as a continuum of stable ‘‘lamin
fixed points (x.1) adjacent to a chaotic repeller or ‘‘turbu
lent’’ state (xP@0,1#).

In ordered, deterministic networks, the turbulent state
propagate through the lattice in time for a large enough c
pling, producing sustained regimes of spatiotemporal in
mittency. Here, we investigate the phenomenon of transi
to turbulence in small-world networks using the local maf
@Eq. ~2!# in the coupled system described by Eq.~1!. The
local parameter is fixed at the valuer 53 in all the calcula-
tions. As in ordered networks, the transition to the exten
turbulent state can be characterized through the ave
value of the instantaneous fraction of turbulent sitesFt , a
quantity that acts as the order parameter for the system@3#.
We have calculated̂F& as a function of various paramete
of the system from a time average of the instantaneous
bulent fractionFt as
03622
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1

T (
t51

T

Ft . ~3!

Thus ^F&50 describes a laminar state and^F&P(0,1# cor-
responds to a turbulent state of the network. Random in
conditions were used in all runs with given parameter val
of the system~1!. About 104 iterations were discarded befor
taking the time average in Eq.~3! andT was typically taken
at the value 104. Increasing the averaging timeT or the net-
work sizeN does not have appreciable effects on the resu
It should be noticed that a minimum number of initially tu
bulent sites is always required to reach a sustained stat
turbulence.

Figure 1 showŝF& as a function ofe for different fixed
values of the probabilityp in a typical small-world network
with nearest neighbor numberk510 and sizeN5104. The
error bars shown on̂F& correspond to plus and minus th
standard deviationsD^F& ~square root of the variance! of the
time series ofFt at each value of the coupling parametere.
We have verified, by doing 25 realizations of the rewirin
process described in Sec. I, that fluctuations on^F& and on
D^F& due to different configurations of the networks are n
significant.

Figures 1~a!–~d! show that, for a fixed value ofp, there is
a critical value of the couplingec at which the transition
from a laminar state to turbulence occurs. For small value
p @Fig. 1~a!#, a regime of relaminarization of the system tak
place on an interval of the coupling parameter after a w
dow of turbulence. The relaminarization gap disappears w
increasingp, leaving a dip in thê F& curve, as seen in Fig
1~b!. For small values ofp the transition to turbulence, as th
coupling is varied, takes place continuously, similarly to
second-order phase transition. Asp is increased, the transi
tion becomes progressively steeper until it happens disc
tinuously, as in a first-order phase transition. There exis
critical value of the probabilitypc'0.55 at which the char-
acter of the transition to turbulence changes from a seco
order phase transition@Figs. 1~a! and 1~b!# to a first-order
phase transition@Figs. 1~c! and 1~d!#.

In Figs. 2~a! and 2~b! we show the mean turbulent frac
tion ^F& and its standard deviationD^F& plotted as functions
of both p and e. Figure 2~a! shows that the transition to
sustained turbulence occurs on a critical curve on the par
eter plane (p,e). The variation in the nature of this transitio
along this critical curve asp increases can clearly be appr
ciated in Fig. 2~a!. Typical statistical deviations are seen f
small values ofp and e in Fig. 2~b!; however, this figure
reveals very large fluctuations in the instantaneous turbu
fraction occurring for larger values of those parameters,
which can also be observed as the ‘‘bulbs’’ in Figs. 1~c! and
1~d!. As it shall be discussed in the following section, th
phenomenon is associated with the emergence of nontr
collective behavior in the system.

We have numerically calculated the critical values of t
coupling ec for the onset of turbulence in small-world ne
works with fixedk510 as a function of their rewiring prob
ability p. Figure 3 shows the resulting critical bounda
ec(p) for the transition to turbulence, as well as the pha
3-2
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FIG. 1. Mean turbulent fraction̂F& as a function of the couplinge for small-world networks withk510 andN5104. The error bars
indicate61 standard deviations.~a! p50, ~b! p50.17, ~c! p5pc50.55, and~d! p50.80.
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diagram of the system, on the parameter plane (p,e). The
critical coupling valueec increases as the disorder in th
network, described by the probabilityp, grows. The critical
boundary curveec(p) corresponds to a continuous, secon
order phase transition forp,pc50.55 and to a discontinu
ous, first-order transition forp.pc . Figure 3 indicates with
a dotted line where the first maximum of the mean turbul
fraction ^F& occurs on the parameter plane. This line of fi
maxima of^F& crosses the critical boundary separating
laminar and the turbulent states of the system at the v
p5pc , and the character of the phase transition change
this point. The relaminarization gap is also indicated on
plane (p,e).

For values of the probabilityp,pc , where a continuous
transition from a laminar regime to turbulence occurs,
variation of the order parameter^F& near the critical curve
can be characterized by a critical exponentb as ^F&;(e
2ec)

b. For fixedp, the exponentb can be calculated from a
log-log plot of ^F& vs (e2ec). The critical exponentb var-
ies continuously with the rewiring probabilityp. In Fig. 4 we
03622
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show the resulting graphs ofb as a function ofp for several
small-world networks characterized by their neighbor nu
berk. In each case, the dependence of the exponentb with p
is well accounted by the linear relationb5h(pc2p), where
the slopeh varies with k. As p increases, the exponentb
becomes smaller and the corresponding phase transition
laminarity to turbulence gets more abrupt. The change in
character of the transition from second order to first or
should occur at the valuep5pc for which the exponentb
vanishes. Figure 4 shows the extrapolation of the stra
line corresponding to the small-world network withk510
until its intersection with thep axis, predicting a critical
valuepc50.55. This, in fact, is the critical value of the prob
ability at which the change in the character of the transit
to turbulence for this network was observed in Figs. 1~c!,
2~a!, and 3. We recall that the measure of the characteri
path length for the family of small-world networks withk
510 drops to small values typically associated with a ra
dom network when the rewiring probability is about 0.5
3-3
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@11#. Thus the critical valuepc50.55 found for the emer-
gence of the first order phase transition should be relate
the onset of randomness in the network. In fact, it has
cently been reported that the transition from laminarity
turbulence in randomly coupled map networks can occur
continuously@16#.

By extrapolating the different lines, one can get pred
tions of the critical probabilitiespc for different values ofk.
We have numerically verified these critical valuespc for sev-
eral small-world networks possessing different neigh
numbersk. Thus the linear relation that arises from Fig.

FIG. 2. ~a! Mean turbulent fraction̂F& as a function ofp ande.
~b! Standard deviationD^F& as a function ofp and e. Network
parameters arek510 andN5104.

FIG. 3. Phase diagram of the system~1!. The critical boundary
separating laminar and turbulent regimes is shown with a cont
ous line. Thin line: second-order phase transition; thick line: fir
order phase transition. The dotted line indicates the locus of the
maxima of ^F& on the parameter plane. The regions of nontriv
collective behavior are bounded by dashed lines.
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seems to characterize the transition to turbulence via s
tiotemporal intermittency in small-world networks. Furthe
more, Fig. 4 predicts that no critical valuepc<1 can be
found in the casek54, and thus the transition to turbulenc
in a small-world network with neighbor numberk54 should
occur continuously~second order! for any p, and should al-
ways possess a critical exponentb.0. This prediction was
also verified numerically.

Figure 5 shows the predicted critical probability valuespc
as a function ofk. Note thatpc decreases rapidly with in
creasing neighbor numberk. The characteristic path lengt
becomes smaller with increasingk @11# and, consequently
the connectivity of the small-world network approaches
all-to-all coupling limit of a globally coupled system, wher
the transition to turbulence is always a first-order phase tr
sition @10#. In globally coupled systems, the absence of s
tial relations excludes the possibility of supporting small d
mains of turbulent maps that would be necessary fo
continuous transition to turbulence. The decrease in the v
of pc observed in Fig. 5 means that the networks need
disorder for achieving a first-order phase transition to tur

u-
-
st
l

FIG. 4. Critical exponentb for the second-order phase transtio
as a function of the rewiring probabilityp. k54 ~squares!; k56
~circles!; k510 ~triangles!; andk520 ~pentagons!.

FIG. 5. Critical values of the rewiring probability vsk.
3-4
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TURBULENCE IN SMALL-WORLD NETWORKS PHYSICAL REVIEW E65 036223
lence if their neighbor numberk is sufficiently large. This
reflects the fact that networks with large enoughk are already
closer to global coupling, and therefore they require less
wiring to behave statistically similar to globally coupled sy
tems.

IV. NONTRIVIAL COLLECTIVE BEHAVIOR

In contrast to the usually expected statistical behavior,
large amplitudes of the standard deviations observed
some regions of the parameter plane (p,e) in Fig. 2~b! do
not diminish with increasing system size or with longer a
eraging time. These large fluctuations of a statistical quan
indicate the presence of collective motions of the system.
example, Fig. 6 displays the return maps of the instantane
turbulent fractionFt for two different values of the coupling
corresponding to the two ‘‘bulbs’’ observed in Fig. 1~d!. Fig-
ure 6~a! shows a quasiperiodic orbit in the dynamics ofFt in
the first bulb, while Fig. 6~b! reveals a collective period-two
motion occurring in the second bulb of Fig. 1~d!. The large
fluctuations measured byD^F& reflect the amplitude of the
collective oscillations ofFt that emerge in those regions o

FIG. 6. Return maps of the instantaneous turbulent fraction f
small-world network with k510, N5104, and p50.80. ~a! e
50.67 and~b! e50.85.
03622
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parameters. This feature corresponds to a phenomeno
nontrivial collective behavior already observed in the temp
ral evolution of the mean field of several chaotic extend
systems@17#. The quantityFt is a simpler statistical descrip
tion than the mean field and, in this case, it already manife
a nontrivial collective behavior of the system over lon
times.

The two regions on the parameter plane where state
nontrivial collective behavior appear are indicated within t
turbulent zone in the phase diagram of Fig. 3. Note that
emergence of nontrivial collective behavior occurs for lar
enough coupling and an appreciable degree of disor
which itself implies a small characteristic length betwe
any two elements in the network. Thus, as both the amo
of short cuts and the coupling strength between differ
parts of the network increase, the information transfer
quired for the emergence of collective behavior is mo
likely to occur.

Nontrivial collective oscillations in the turbulent phase
coupled map systems have also been observed in h
dimensional Euclidean lattices@18#, fractal lattices@8#, as
well as in globally coupled maps@10#. Our results for small-
world networks show that ordered connections are not es
tial for the occurrence of nontrivial collective behavior.

V. CONCLUSIONS

We have investigated a coupled map model for the tr
sition to turbulence via spatiotemporal intermittency
small-world networks. Although the local dynamics
simple, we expect that the essential properties of the tra
tion to turbulence in small-world structures is captured
this model. Coupled Chate´-Manneville maps could be re
garded as a crude description of the dynamics of an excit
medium. The system of coupled maps on small-world n
works can also be used to study different spatiotemporal
namical processes on these structures by providing appro
ate local maps or couplings.

By varying the rewiring probability in small-world net
works, the behavior of the transition to turbulence can
studied in the regime between ordered lattices and c
pletely random networks. The critical boundary separat
the laminar and the turbulent regimes was calculated on
parameter plane (p,e) of the system. We have found that th
character of this transition changes progressively from
second-order phase transition to a first-order phase trans
as the disorder in the network, measured by the rewir
probability, is increased. The critical value of the rewirin
probability for the onset of the first-order phase transiti
was predicted from the scaling behavior observed in the c
cal exponentb for small values of the probability. Addition
ally, we have been able to calculate the critical values of
rewiring probability as a function of the number of initia
nearest neighbor in small-world networks.

Discontinuous transition to turbulence and nontrivial c
lective behavior in the turbulent regime are characteris
features of globally coupled maps@10#. These same collec

a

3-5
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tive properties emerge in small-world networks as their
wiring probability is increased. Because of the ubiquity
small-world networks in nature and in human-made str
tures, we may expect to see nontrivial collective behavi
arising in many systems if the appropriate values of relev
parameters are reached. We may expect that other typ
phenomena of globally coupled systems, such as the for
ce
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tion of clusters of synchronized elements@19#, could also be
observed in small-world networks.
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