PHYSICAL REVIEW E, VOLUME 64, 026208
Pattern formation on trees
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Networks having the geometry and the connectivity of trees are considered as the spatial support of spa-
tiotemporal dynamical processes. A tree is characterized by two parameters: its ramification and its depth. The
local dynamics at the nodes of a tree is described by a nonlinear map, giving rise to a coupled map lattice
system. The coupling is expressed by a matrix whose eigenvectors constitute a basis on which spatial patterns
on trees can be expressed by linear combination. The spectrum of eigenvalues of the coupling matrix exhibit
a nonuniform distribution that manifests itself in the bifurcation structure of the spatially synchronized modes.
These models may describe reaction-diffusion processes and several other phenomena occurring on heteroge-
neous media with hierarchical structure.
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[. INTRODUCTION patterns can be expressed as a linear combination. Explicit
calculations of the eigenvalues and eigenvectors are pro-
In general, media that support nonequilibrium pattern for-vided. Section IV presents a study of the bifurcation structure
mation processes are nonuniform on some length scales. CGdnd stability of spatially homogeneous, periodic patterns on
ten the nonuniformity arises from the intrinsic heterogeneousrees for a local dynamics described by the logistic map.
character of the medium, typical of pattern formation inSpecific features emerge as a consequence of the ramified
many biological systems, or from random discontinuities orcharacter of the lattice. Finally, a discussion of the results is
from clustering in the medium. It is well known that hetero- given in Sec. V.
geneities can have significant effects on the forms of spatial
patterns; for example they can produce reverberators in ex-
citable media and defects can serve as nucleation sites for Il. COUPLED MAP LATTICE MODEL
domain growth processes. Recently, there has been much in-
terest in the study of dynamical processes on nonuniform Trees constitute a class of hierarchical networks that can
networks, such as fractal latticEs, 2], small world networks be generated by a process of successive branching starting
[3], hierarchically interacting systen4,5], and random sys- from an initial element. In this paper, it is assumed that the
tems[6], etc. An especially interesting class of nonuniform branching rule, or ramification numbeR, is the same
geometries are trees whose hierarchical structure and lack #irough the network. At the initial level of the tree, which we
translation symmetry can give rise to a number of distinctivecall level 0, there is one element or cell that splits ifto
features in their dynamical and spatial properties. ExampleBranches connecting daughters cells, which comprise the
of phenomena where hierarchical networks appear includivel of construction 1. Each cell then splits irffodaugh-
diffusion-limited aggregation clusters, capillarity, chemicalters, producing?® sites at level 2. This construction contin-
reactions in porous medja], turbulencg 8], ecological sys- ues until some level, which we call the depth of the tree.
tems[9], and interstellar cloud complex¢s0], etc. Hierar-  There areR' cells at the level of construction, or laye,
chical structures have also been studied in neural nets, baherel=0,1,2 ... L. Thus, each cell in the lattice has one
cause of their exponentially large storage capa¢ity].  parent andR daughters, except for the level O cell, which has
Although many hierarchical structures found in nature haveno parent, and for boundary cells at the lelelL, which
random ramifications, here we study the case of simple, ddiave no daughters. The number of cells lying on the bound-
terministic treelike lattices. This allows to focus on the ary isR". The total number of cells on the tree, or the system
changes induced in spatiotemporal patterns as a result of tisize, isN=(R-"*—1)/(R—1).
hierarchical structure of the interactions in the system. A cell belonging to a levellis connected only to neighbor
In this article we consider discrete reaction-diffusion pro-cells lying in adjacent levels on the tree, i.e., to its parent and
cesses occurring on general trees. The spatiotemporal dgaughters. We do not consider direct interactions among cells
namics corresponds to a coupled map lattice system defindzelonging to the same level of construction. With these pre-
on the geometrical support of a tree. In Sec. Il, the coupledcriptions, a tree is completely characterized by two param-
map lattice models for the study of general trees are introeters: the ramificatioiR and the deptiL. We shall use the
duced. A general notation for the treatment of deterministimotation ®,L) to indicate a tree possessing those param-
trees is also defined. The diffusion coupling among neighboreters.
ing sites of the lattice is described by a matrix, which exhib- Each cell in the tree can be specified by a sequence of
its an ordered structure. In Sec. lll, the spectrum of eigensymbols @ a» . . . @), wherel is the level to which the cell
values and eigenvectors of the coupling matrix is describedbelongs. A symboly, can take any value in a collection Bf
The eigenvectors form a complete basis on which all spatiallifferent digits forming an enumeration system in b&ge
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FIG. 1. Tree with ramification
R=3 and depthL=3, showing
the labels on the cells. The corre-
sponding vector-component index
j is indicated besides each cell.

which we denote bye, e, ... ,eg}. The level O cell can be is a nonlinear function specifying the local dynamics; and
assigned a different symbol, sayd) = (€). v is a parameter that measures the strength of the coupling
A cell identified with the sequencex(as, . . . «;), with | among neighboring cells and plays the role of a homo-

>0, is always connected to its parent that has the labejeneous diffusion constant. This type of coupling is usually
(ara; ... @ 1), where the sequence of the 1 symbolsis  called backward diffusive coupling and corresponds to a
the same as in the first{ 1) symbols of the daughter cell discrete version of the Laplacian in reaction-diffusion
(ajay...q)). If I<L, the cell (@1ay...q) is also equations.

connected to its R daughters that are labeled The above coupled map lattice equations can be general-
by (aiaz...ae€r),(ar1az.. . a1€), ... (e ... a€R); ized to include other coupling schemes, nonuniform cou-
where the sequence of the _firstymbols is the same as in the pling, varying ramifications within the network, or
mother cell @@, . . . @). Figure 1 shows a tree with rami- continyous-time local dynamics. Different spatiotemporal
fication numbeR=3 and depttL =3, indicating the labels  ,henomena can be investigated on treelike structures by pro-

on the cells. - ; ; :

. . . viding appropriate local dynamics and couplings.
_ Atree might be _con5|dered as the sp_atlal support of spa- Equations(1)—(3) can be written in vector form as
tiotemporal dynamical processes with either discrete or con-

tinuous time. We focus on reaction-diffusion and pattern for-
mation phenomena on trees. The dynamical systems

considered here are defined by associating a nonlinear func- Xeo1=F(X,) + YMX, . (4)
tion with each cell of a given tree and coupling these func-

tions through nearest-neighbor diffusion interaction. In this

way, a coupled map lattice describing a reaction-diffusion The state vectorx,
dynamics on a tree with ramificatidR and depthL can be
expressed as

possessedN componentsx;(j),j

=0,...N—1, corresponding to the statgg « .. .«;) of

the cells on a treeR,L) labeled with the sequence of sym-

bols (a;...a)). The matrix M expresses the coupling

among the componen{(j)}.

R The components ok; may be ordered as follows. The

E x(€)— th(eo)}; (1) level O cell is assigned the indgx 0. All other cells labeled

i=1 by (a;...q)) can be associated to a unique integer index
j=1,... N—1, by the rule

(1) Level O cell:

X+ 1(€0)=T(Xi(€g)) + ¥

(2) Level 0<I<L cells:

Xera(ag ..o =F(X(ay ... q))
. R -k
> xlay ... a€) (al---al)lemﬂLE aR " (5)

+ -
Y ~ k=1

+X(aq .. a_q)

As an example, consider the cell labeled by the sequence

(21) on the tree of Fig. 1. In this casB=3 and the

cell belongs to the level=2. According to the rule of

Eq. (5), its index isj=11. Its parent is labeled by E¢R),

(3) Levell=L cells: and has the index=3; while its daughters, labeled by

(210), (211), and (212), are assigned indexe84,35, and
XH—l(al' : 'aL):f(Xt(al - -aL))+ Y[Xt( ag .. 'aL—l) 36, respective|y_

(3) Given this notation, th¢ component of the vector-valued
function f(x;) is [f(x;)];=f(x,(j)). For a tree characterized

where x(a; ...qa,) gives the state of the cell labeled by (R,L), the elements of its corresponding coupling matrix

by (a;...qa) on the tree at discrete time; f(x,) M, denoted byM(i,j), (i,j=0,1,...N—1), are

—(R+1)Xt(a1...a|)}; (2

—Xt(a'l P a,_)ht],
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—-R, ifi=0andj=0
—(R+1), ifi=jand0<i<(R-—1)/(R—1)
M(i,j)=M(j,i)=¢ —1, ifi=jandi=(R-—1)/(R-1) (6)
1, ifi#jand{j=int[(i—1)/R] or i=int[(j—1)/R]}
0, elsewhere,

where int@@) means the integral part of The matrixM is a An eigenvectom,, representing a tree of depthhas (L
NXN real and symmetric matrix. It should be emphasized+ 1) levels, including the level O cell. Because of the homo-
thatM plays the role of a spatially discrete diffusion operatorgeneous layer property, there caniel + 1 distinct eigen-
on treelike networks, analogous to the Laplacian in a spavectors in the subsdlu,} satisfying this condition; one ei-

tially continuous reaction-diffusion equation. genvector for each homogeneous layer that can be formed.
Note that the number of different layered eigenvectors de-
IIl. SPECTRUM OF THE COUPLING MATRIX pends only on the depth of the tree and not on its ramifi-

cationR. In particular, the spatially homogeneous eigenmode

Similarly to reaction-diffusion processes on fractal latticesof \1, which we denote by, belongs to the subsé,} and
[1], the spatial patterns that can arise on trees are determingd N components are

by the eigenmodes of the coupling matik. Additionally,
the stability of the synchronized states is related to the set of Up(agas . ..a)=N"Y2 VI, Va (9)
eigenvalues oM.

In order to analyze the eigenvector problem, consider gng
tree with ramificationR and depthL on which a spatiotem-
poral dynamics has been defined in the vector form of Eq. 1
(4). The complete set of orthonormal eigenvectors of the u;=— col (1,1,...,2. (10)
corresponding matrisM can be described as the superposi- VN
tion of two distinct subsets of eigenmodes. One subset,
which will be denoted byu,}, comprises those eigenvectors Since the eigenvectors d¥l are mutually orthogonal, all
associated to nondegenerate eigenvalues; and the other suither eigenmodes, in either sub$et} or {v3 4, must satisfy
set contains the eigenvectors corresponding to degenerate ei-
genvalues oM, and will be represented by? J (the indi- D

ces refer to the degeneracy, as explained beldhus, the Up(ay...a)=0; n#1 VI, Ve,

complete set of eigenvectors bf is {u,}U{v%J. Each ei- phe

genvector describes a basic spatial pattern that may take

place on a tree characterized by, (). > vlday...a)=0; VI, Va; (11
Ay oeeny a|

A. Nondegenerate eigenmodes that is, the sum of the components of any other eigenvector

The eigenvectors oM belonging to the nondegenerate of M different andu, is zero.

subsef{u,} satisfy Figure Za) shows the three layered eigenvectors and their
_ associated eigenvalues of the coupling matrix corresponding
Mup,=bpun, n=12,...»; (7 to0 a tree withR=3 andL=2.

The set of eigenvalues arising from EJ) may be or-
dered by decreasing value 4b,,b,, ... b ,b_;1}. By
Gershgorin’s theorenf12], the homogeneous eigenvector
possesses the largest eigenvalueMgfwhich isb;=0. On
the other hand, for large the smallest eigenvalue is found to

whereb,, is the eigenvalue associated to the eigenvegtor
There arev distinct eigenvectors with their corresponding
eigenvalues in this subset. Theomponent of a vectau, is
[Un]j=Un(a@ie; . . . @), according to the associating index
rule, Eq.(5). Any eigenvectow, in this subset is character-
ized by the following property: all its components corre-

sponding to cells of the tree lying on the same level or layer _  BAIo
| are identical, i.e., limby .= (2+3R)2 R(4+R), (12
L—oe
Un(@ias ... a))=Un(B1B2 ... Bi), 8
and similarly, we find
where (@a, .. .qp) and (818, ... B label any two cells y
belonging to the level. A nondegenerate eigenvector Idf “(R+2)+ JR(ATR)
thus possesses homogeneous layers. Because of priferty lim b,= ) (13
we also refer to the elements ff,,} aslayeredeigenvectors. Lo 2
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FIG. 2. A tree withR=3, L=2. (a) The three nondegenerate, layered eigenvedtogks, and their corresponding eigenvaluéb)
Degenerate eigenvectofg? } and corresponding eigenvalues.

The eigenvaluegb,,b,, ... b ,b 1} appear in pairs B. Degenerate eigenmodes
b, andb,, asb, ,; andb, above, according to the sign of

, The subset of degenerate eigenvec of the cou-
the square root term. These pairs are related by g g i

pling matrix M corresponding to a tree characterized by

(R,L) satisfy
b,+b,=-2(R+1), (14
MV?ns= amngws' (17)
where . . .
wherea,, is the eigenvalue associated to a groupsade-
L+3 generate eigenvectorgv V2., ... v2J belonging to
5 if L is odd {v3 4. The indexg goes from 1 tas and counts the different
n+n'= - eigenvectors associated to the degenerate eigenagl|ue
L+3, ifLiseven. The integer indicesn ands label different eigenvalues,,s.
The eigenvalu®,, . 3, arises whenever is odd, and it is ! ' ' ! ' ! ' '
. . . 5F oo X e 4+ % o e 4+ x e o + A o
not associated with anothéy,. Its value is
4 eo0 X e % o [ ° LYAN x>
b +3)=—(R+1). (15
L 3 ¢ X * . X « A *e -
Thus, because of Eg&l4) and(15) the eigenvalues asso-
ciated to the nondegenerate eigenvectors satisfy o | . . . A xe A
v 1+ . JAN o
E bn:_L(R+l)- (16) ] 1 1 1 ] I 1 1
n=1 -7 -6 -5 -4 -3 -2 -1 0
bn»ams

Figure 3 shows the spectrum of eigenvalyes}, indi-
cated by black dots, for a tree with ramificatiét=3 at FIG. 3. Spectrum of eigenvalues at increasing depthfor a
successive depthk. Eigenvalues associated to degenerat@ree with ramificationR=3. Eigenvalues{b,} are indicated by
eigenvectors oM, to be discussed next, are also shown inblack dots ®@). Other symbols indicate eigenvalugs,,. as fol-
Flg 3. lows: aim (A); Aom (*); Azm (X); Q4m (O); Asm (+)
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Thej component of a vectdvg,¢ corresponds to a cell of L L(L+1)
the tree labeled by the rule(5), ie., [V Z m=—bp—". (20)
=v) (a@1a5 . ..a)). The eigenmodes/d, } are characterized m-t
by the following two properties, Additionally, them eigenvaluesa,s that appear at a levél
=m satisfy the following property
vi{aiay...a)=0; 1=012...L—-m; (18

M s

. L . ans—=—(M—1)(R+1)—1, 21
that is, all the components of . lying in successive levels ms= "~ ( ) ) @D

vanish up to the levdl=L—M; and

(%)
Il
[u

and therefore the total sum of eigenvalgg for a matrix
M associated to a tredr(L) will be

> vi{aiay ... a)=0; (19

a1y . ..Qa| L

L m
> 2 ans=— X (mM-1)(R+1)-L
i.e., the sum of the components of an eigenveefqr, lying m m=t
on the same level of the tree spatially describedvfyy, is (R+1)(L-1)L
zero. -t - L. (22)

An eigenvectond . is spatially uniform in part, having all
its components, or equivalent cells, equal to zero up to level Figure 3 shows the spectrum of eigenvaldas, for a
L —m. The indexm counts the number of remaining nonva- tree with ramificatiorR= 3 at successive depths Eigenval-
nishing layers in the eigenvectaf,, and its possible values ues{b,} corresponding to nondegenerate eigenvectors are
arem=1,2, ... L. Each of them nonvanishing layers may also shown there. Thus the distribution of the full spectrum
be homogeneous, but different among each other. The indexX eigenvalues of the coupling matrM can be seen as a
s counts the number of possible different eigenvectors witfunction of the depth of the tree in Fig. 3. Note that the full
m different homogeneous, nonvanishing last layers. Thus, spectrum{b,}U{a,g is always contained between the ei-
may take the values=1,2, ... m. genvalued,;=0 andb_, ;.

The indexg lifts the degeneracy of vectors with the same  The total number of distinct eigenvalues Mf, including
indices m and s. The remaining, nonvanishing last layers both typesa,,s andb,,, and denoted by}, is
may in fact be nonhomogeneous, and may consists of sub-
trees with homogeneous sublevels, which would reproduce
the structure of the layered nondegenerate eigenveatars
The levell =L —m is the last vanishing layer in an eigenvec-
tor havingm nonvanishing layers. On this layer, there are Note that the total number of eigenvalues in the spectrum
R-~™ components or cells, and each of these cells give®f M is determined only by the depth of the tree and is
origin to R layered subtrees, i.e., subtrees with homogeneou&dependent of its ramification, although the specific values
layers. TheseR subtrees themselves are related by the sun®f the eigenvalues do depend on b&fandL. Since there
property of Eq.(19), which results in R—1) linearly inde- ~appearm eigenvalues of typey,s at each level =m and
pendent subtrees. Therefore, the number of linearly indeperihere are R—1)R"~™ degenerate eigenvectov§, associ-
dent eigenvectors? ¢ with the same valuesn andsis §  ated to each eigenvalag,s, the total number of independent
=(R—1)R""™ The indexg expresses the degeneracy of theeigenmodes in the subsgtd, is S5_;m(R—1)R""™. In
eigenvectors associated to the eigenvaiyg, and it may the nondegenerated subdet,} there are [ +1) indepen-

O (Lt L(L2+1) _ (L+1)2(L+2). 3

take the valueg=1,2, ... ,R—1)R""™. In this way, the set dent eigenvectors, as we saw before. Therefore, the total
of degenerate eigenvectofs? of the matrix M corre- number of independent eigenmodes\bfis
sponding to a treeR,L) is fully described. L

Figure 2b) shows the subset of degenerate eigenvectors B L—m
{v8 4 and the eigenvalues corresponding to a tree character- (L+1)+m2:1 m(R-1R
ized by R,L)=(3,2).

The indexm also expresses the form in which an eigen- _ oL R-FI-R(L+1)+L
value a,,s arises in the spectrum of eigenvalueshdf An =(L+D+(R-DR RL(R—1)2
eigenvaluea,,s appears for the first time at a leveFm>1
and stays in the spectrum of eigenvalued/oht subsequent R-F1-1
levels up tol =L. Thus the indexm may take the valuem " TR-1 N, (24)

=1,2,...L. On the other handm different eigenvalues

arise at the level of constructide= m of the tree, which are as expected.

counted by the indes=1,2,...m. Figure 4a) shows the complete spectrum of eigenvalues
The total number of distinct eigenvalues of tyags be-  of M and the degeneracy fraction of each eigenvalue, for a

longing to the spectrum of a matriM associated to a tree tree characterized by parameterR,l()=(2,11). The (

(R,L) is +1)=12 eigenvalue$,, are indicated by dots and they are
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T T T T T T -R 1 1 1
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1 -1 0
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1 0 -1 0
M= NV
o 1 0 0 -1 0 9
N ooaf .
1 o o o ... -1
0+ I| | I (IS I I | Sl |i_
. . . . . [ and the associated eigenvectorshbfhave R+1) compo-

-5 -4 -3 -2 -1 0 nents. There exist two nondegenerate eigenvectors, which
are the homogeneous=(1/4/R+1)col(1,] ...,1), andi,,
associated to the eigenvalubs=0 and b,, respectively.
There is only the eigenvalua;; associated to=(R—1)
degenerate eigenvectorfvi;,vZ,, ... Vi, '}, The total
number of independent eigenmodedwfis (R+1), and the
total number of distinct eigenvalues &=3, in agreement
with Eqg. (23).

All the eigenvectors oM have the level =0, with one
component or cell; and the levek 1, for which there ar®
components. The layered eigenvecatgrwill have the form
u,=col(x,y,y, ....y). Its eigenvalue equatioMu,=b,u,,
plus the normalization conditioju,|=1, yield the relations

—Rx+Ry=b,X,
bn»ams
FIG. 4. (a) Full spectrum of eigenvalues of the coupling matrix x—y=byy, (26)
M for a tree withR=2, L=11, showing their degeneracy. For )
clarity, eigenvaluegb,} are shown with dots just below the zero Xe+ Ry2= 1,

line. The vertical axis shows the degeneracy of the eigenvalues
{ane divided byN, indicated by vertical bars at each eigenvalue.whose solutions aré,=—(R+1), x=—-R/JR(R+1), y
(b) The measure of the set of all eigenvaluesvaf =1/JyR(R+1). Thus,

nondegenerate, while the degeneraty2' ™ of each of B
the L(L+1)/2=66 eigenvalues,, is plotted as a vertical U= m
bar. It is evident that both the distribution of eigenvalues and
their degeneracies are nonuniform. Another convenient rep-

resentation of the scaling properties of the spectrum of ei; 1 _ g .
genvalues of the coupling rr?atrri)x can be obtair?ed by plottin form v3,=col(0xy,%;, - . Xg), .sat|sfy|ng propert_les{lgB)
the accumulated sum of the degeneracies of all eigenvalue f]d (199)’ as well as Fhe . e|genve_c_tor gequatldVIvll
that is the measure of the spectrumMbfidenoted byp), on ~ — &12Vi1 a@nd the normalization conditiofwf;|=1. These
the eigenvalue axis for larde as in Fig. 4b). The resulting  "€lations lead to

graph presents the features of a devil's staircase, a fractal

col—R,1,1,...,D. (27

On the other hand, the degenerate eigenmdgéas the

curve arising in a variety of nonlinear phenomena. g % =0
The eigenmodes of the coupling matrix reflect the topol- =
ogy of the tree and they are analogous to the Fourier eigen-
modes appearing in regular Euclidean lattices. In this sense, —X{= 851X , (29)

conditions in Eq.(8) and Eqs.(18)—(19) represent different
wavelengths on a tree characterized by paramef/is)(

C. An example

As an example of calculation of eigenvectors, considewhich imply that a;;=—1. Making x;=X and X;=X3

any tree with ramificatiolR and depti_=1. The number of = ...=Xgr=Y; we get

cells of the tree isN=(R?>-1)/(R—1)=R+1. Thus, the

tree consists of a mother cell at levet 0 connected to it® X+(R-1)y=0,

daughters at level=1. The correspondingR+1)X(R (29
+1) coupling matrix has the form x2+(R—1)y?=1,
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with solutions, x=—-(R—1)/YR(R—1), y=1//R(R—1). tial pattern as a parameter is changed. Consider spatially syn-

Thus chronized, periok states such as(aq, ...,x)=X,
V(ay, ....q); wherexy, (k=1,2,...K) is a periodK or-
vl =——col [0,—(R—1), 1,...,1\. bit of the local mapf)(x,) =x,. The linear stability analy-
VR(R—1) _— sis of periodic, synchronized states in coupled map lattices is
(R—1) times carried out by the diagonalization & in Eq. (4), and it
(30) leads to the conditiongl3]
For vil=col (0,0%5, . .. Xg) the procedure can be re- K
peated by making,=2z, X3=X,= ...=Xg=W, and obtain- H [f'(;k)Jr yu]==*1, (33
ing k=1
2 _
vip=col[0.0.z, w,....wh, whereu is an eigenvalue, in either sfin,} or {a,,4, of the
(R—2) times coupling matrixM describing a treeR,L). There are()
=(L+1)(L+2)/2 different values ofu [Eq. (23)] to be
z+(R=2)w = 0, used in Eqs(33).
=>Zz+ (R-2)w? = 1 The nonuniform distribution of the eigenvalue spectrum is
W ’ manifested in the stability of the synchronized states through
_(R=2) ] this relation and give rise to important differences when

— — compared, for instance, with the bifurcation structure on

VR-1D(R-2)’ v VR-1D((R-2) regular lattices. As an application, consider a local dynamics
described by the logistic map(x) =Ax(1—x). In this case,

(31) the bifurcation conditions, Eq:33), for the periodK = 2P,
synchronized state on a tree characterized by parameters
,L) can be expressed as the set of curves
In general, we get (RL) b d h f
vé,=col/0,....0,z, w,...,w\, 2P
_— - Pl )= — %) + =+
PO st(m=I1 IM1-2x)+ yu]=+1. (34)
z+(R—g)w = 0,
:>22+(R—g)w2 - 1 For each sign, Eqs(34) yield (L+1)(L+2)/2 boundary
’ curves in the planey,\) that determine the stability regions
“(R—g) 1 of the period 2, synchronized states on the tree.
z= g , w= , The scaling structure for the period®,2synchronized
VIR—g+1)(R—¢g) VIR—g+1)(R—¢g) states in trees is similar to that of a any lattice described by a
diffusive coupling matrix, since the form of E¢B4) is the
g=12,.. . (R—=1); (32 same in any case. As for any latti¢®r example regular

Euclidean lattice§13] or fractal lattices[1]), the stability
regions for the period 2 synchronized states in they\)
é:)lane scale a3~ 46 P, and y~a P, where 6=4.60 . ..
anda=—2.5@ ... areFeigenbaum’s scaling constants for
éhe period doubling transition to chaos. However, the specific
Xructure of the eigenvalue spectrum of the coupling matrix
determines the shapes and gaps of the regions of stability of
synchronized, periodic states.

The boundary curves of Eq§34) for the synchronized,
fixed point state =0) are given by the straight lines

giving (R—1) eigenvectors in the degenerate sulséf}
for this example. With the addition of the two nondegenerat
eigenvectorsu; and u,, there areN=R+1 independent
eigenvectors. Therefore, all the eigenvectors and eigenvalu
associated to a matri¥ corresponding to a tree character-
ized by parametersR,1) are accounted for. Note that since
the eigenvaluea;;=—1 appears at levdl=m=1, it will
stay in the spectrum of eigenvaluesffor all subsequent
levels of construction, i.ea;;=—1 arises for trees of any
depth. Similarly, the eigenvalu®, =0 and its associated ho-
mogeneous eigenvectay always appear in a tree. AN=uy+l, A=uy+3, (35

IV. BIFURCATION STRUCTURE AND STABILITY

OF SPATIALLY SYNCHRONIZED STATES which are first crossed for the most negative eigenvalue,

=h, 4. Figure %a) shows the boundary curves E@4) in
Spatially synchronized states in extended systems are relhe plane ,\) for the period-two p=1) synchronized
evant since we are often interested in the mechanism bgtate on a tree withR,L)=(3,3), which are given by the
which a uniform system breaks its symmetry to form a spatwo sets
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FIG. 6. Inhomogeneous, period-4 state at parameter values
=—0.22,A=3.2367 for a tree wittR=3, L=3. This pattern is a
linear combination of the six eigenmodes associated to the eigen-
valuea,,. White corresponds to a zero value and black to a value
equal to one.

states (nicheg characteristic of trees and which are not

present in other geometries, for example in regular lattices,

where the distribution of eigenvalues of the coupling matrix

is uniform and continuous in the limit of infinite size lattices.
The set of eigenvectoral,}U{vZ 4 of the coupling ma-

trix M constitute a complete bagisormal modeson which

a statex, of the system can be represented as a linear com-

bination of these vectors. The evolutionxgfthen reflects the

stabilities of the normal modes. Figurébb shows how the

SY{ag,) = —1 SHage) = —1 synchronized state may become unstable through crossing of

3.235 L L the upper boundary; the first boundary segment crossed de-
—04 —03 -02 termines the character of the instability. For example, con-
5 sider an initial state consisting of a small perturbation of the

. _ synchronized, period-two state at parameter values just be-
FIG. 5. () The boundary curveS;=*1 given by Eqs(36)-  yond the boundary segment correspondingje indicated
(37) for the period two, synchronized states of a tree W3,y g cross in Fig. &), where this initial state is unstable.
L=3. The curveS;(b,)=+1 is signaled by arrows. The upper The jnhomogeneous period-four final spatial pattern is rep-
curves correspond to the r.h.s equaHd for both types of eigen-  yogented in Fig. 6; it corresponds to a linear combination of
values. The interior region bounded by these curves is where stabl e six eigenmode$vg g=1 q associated with the
synchronized, period-two states exist in the plapa\j. b) Magni- degenerate eigenvallazqzz’ of th,el r.n.a,trixM corresponding to
fication of the upper curves i@ showing the gaps in the stability = . .
Jhe tree R,L)=(3,3). All other modes are unstable in this

boundary of the period two, synchronized states. Curves corr .
sponding to several eigenvalues are indicated by arrows. The cro&§9ion of parameter space. For any deptof the tree, and

1 —
just beyond the boundarg(a,) = — 1 indicates the parametegs ~ any period 2, the boundary curv&;(a,;) = —1 separates a
andX\ used in Fig. 6. niche of the synchronized state from the stable region for the

eigenmodes$, corresponding t@,,. Thus, a transition be-
Si(bpy)=—N2+2\+4+yb(yb,—2)=+1; n=1234; {tween thesg two spatial patterns can always be observed in
the appropriate regions of they\) plane.
(36)
and V. CONCLUSIONS
N ) In a system of interacting agents, such as the models pre-
Si(amd = — N+ 2N +4+yand yams—2)=*1; (37)  sented in this article, the coupling matrix contains the con-
nectivity of the network and it determines the spatial patterns
m=1,2,3; s=1,...m. that can arise in the system. The underlying inhomogeneous
structure of trees has pronounced effects on the spatial pat-
The boundary between the synchronized, fixed point statgerns that can be formed by reaction-diffusion processes on
and the synchronized period-two state is\at3. The upper these lattices. The spatial patterns are determined by the
boundariegcorresponding to- 1 in the rhs of Eqs(36) and  eigenvectors of the coupling matrM; and the stability of
(37)] have minima\;,=1+5 at valuesy,,=1/b, and the synchronized states is determined by the corresponding
Ymin=1/ans (for any period 2, \ i, depends o). Figure  eigenvalues. The set of normal modes of the coupling matrix
5(b) shows a magnification of Fig(&) around the minima of reflect the connectivity of the tree. These modes have com-
the upper boundaries. The distribution of the minimg,  plex spatial forms but they are analogous to the Fourier
and the presence of nonuniformly distributed gépshes  eigenmodes arising in regular Euclidean lattices. On the
in the boundary curves reflect the nonuniform structure ofother hand, the distribution of eigenvalues Mf and their
the eigenvalue spectrum. Since the nonuniformity in the disdegeneracies are nonuniform. These features affect the bifur-
tribution of eigenvalues persists at any deptbf a tree, this  cation properties of dynamical systems such as coupled map
property allows for regions of stability of the synchronized defined on trees. The scaling structure of the synchronized,
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period-doubled states is similar for both uniform and hierar-dynamics. Similarly, extensions of this work are possible in
chical lattices, but the nature of the bifurcation boundaries i®rder to include networks with variable ramification and/or
different. For trees, the boundary curves are determined bglepths.

the spectrum of eigenvalues of the coupling matrix, which The study of dynamical systems defined on trees and
has a nonuniform density. The nonuniform distribution of other nonuniform substrates should allow us to gain insight
eigenvalues leads to gaps or niches in the boundary curvesto previously unexplored spatiotemporal phenomena on in-
that are not present for coupled maps on uniform latticeshomogeneous systems and to understand better the relation-

where the spectrum of eigenvalues is continuous. ship between topology and collective properties of networks.
We have examined only the simplest spatiotemporal pat-
terns that can be formed on treelike geometries; however, the ACKNOWLEDGMENT
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