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Pattern formation on trees
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Networks having the geometry and the connectivity of trees are considered as the spatial support of spa-
tiotemporal dynamical processes. A tree is characterized by two parameters: its ramification and its depth. The
local dynamics at the nodes of a tree is described by a nonlinear map, giving rise to a coupled map lattice
system. The coupling is expressed by a matrix whose eigenvectors constitute a basis on which spatial patterns
on trees can be expressed by linear combination. The spectrum of eigenvalues of the coupling matrix exhibit
a nonuniform distribution that manifests itself in the bifurcation structure of the spatially synchronized modes.
These models may describe reaction-diffusion processes and several other phenomena occurring on heteroge-
neous media with hierarchical structure.
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I. INTRODUCTION

In general, media that support nonequilibrium pattern f
mation processes are nonuniform on some length scales
ten the nonuniformity arises from the intrinsic heterogene
character of the medium, typical of pattern formation
many biological systems, or from random discontinuities
from clustering in the medium. It is well known that heter
geneities can have significant effects on the forms of spa
patterns; for example they can produce reverberators in
citable media and defects can serve as nucleation sites
domain growth processes. Recently, there has been muc
terest in the study of dynamical processes on nonunifo
networks, such as fractal lattices@1,2#, small world networks
@3#, hierarchically interacting systems@4,5#, and random sys-
tems@6#, etc. An especially interesting class of nonunifor
geometries are trees whose hierarchical structure and lac
translation symmetry can give rise to a number of distinct
features in their dynamical and spatial properties. Examp
of phenomena where hierarchical networks appear incl
diffusion-limited aggregation clusters, capillarity, chemic
reactions in porous media@7#, turbulence@8#, ecological sys-
tems@9#, and interstellar cloud complexes@10#, etc. Hierar-
chical structures have also been studied in neural nets,
cause of their exponentially large storage capacity@11#.
Although many hierarchical structures found in nature ha
random ramifications, here we study the case of simple,
terministic treelike lattices. This allows to focus on th
changes induced in spatiotemporal patterns as a result o
hierarchical structure of the interactions in the system.

In this article we consider discrete reaction-diffusion p
cesses occurring on general trees. The spatiotempora
namics corresponds to a coupled map lattice system defi
on the geometrical support of a tree. In Sec. II, the coup
map lattice models for the study of general trees are in
duced. A general notation for the treatment of determinis
trees is also defined. The diffusion coupling among neighb
ing sites of the lattice is described by a matrix, which exh
its an ordered structure. In Sec. III, the spectrum of eig
values and eigenvectors of the coupling matrix is describ
The eigenvectors form a complete basis on which all spa
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patterns can be expressed as a linear combination. Exp
calculations of the eigenvalues and eigenvectors are
vided. Section IV presents a study of the bifurcation struct
and stability of spatially homogeneous, periodic patterns
trees for a local dynamics described by the logistic m
Specific features emerge as a consequence of the ram
character of the lattice. Finally, a discussion of the result
given in Sec. V.

II. COUPLED MAP LATTICE MODEL

Trees constitute a class of hierarchical networks that
be generated by a process of successive branching sta
from an initial element. In this paper, it is assumed that
branching rule, or ramification numberR, is the same
through the network. At the initial level of the tree, which w
call level 0, there is one element or cell that splits intoR
branches connectingR daughters cells, which comprise th
level of construction 1. Each cell then splits intoR daugh-
ters, producingR2 sites at level 2. This construction contin
ues until some levelL, which we call the depth of the tree
There areRl cells at the level of construction, or layer,l,
wherel 50,1,2, . . . ,L. Thus, each cell in the lattice has on
parent andR daughters, except for the level 0 cell, which h
no parent, and for boundary cells at the levell 5L, which
have no daughters. The number of cells lying on the bou
ary isRL. The total number of cells on the tree, or the syst
size, isN5(RL1121)/(R21).

A cell belonging to a levell is connected only to neighbo
cells lying in adjacent levels on the tree, i.e., to its parent a
daughters. We do not consider direct interactions among c
belonging to the same level of construction. With these p
scriptions, a tree is completely characterized by two para
eters: the ramificationR and the depthL. We shall use the
notation (R,L) to indicate a tree possessing those para
eters.

Each cell in the tree can be specified by a sequence
symbols (a1a2 . . . a l), wherel is the level to which the cell
belongs. A symbolak can take any value in a collection ofR
different digits forming an enumeration system in baseR,
©2001 The American Physical Society08-1
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FIG. 1. Tree with ramification
R53 and depthL53, showing
the labels on the cells. The corre
sponding vector-component inde
j is indicated besides each cell.
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which we denote by$e1 ,e2 , . . . ,eR%. The level 0 cell can be
assigned a different symbol, say (a0)5(e0).

A cell identified with the sequence (a1a2 . . . a l), with l
.0, is always connected to its parent that has the la
(a1a2 . . . a l 21), where the sequence of thel 21 symbols is
the same as in the first (l 21) symbols of the daughter ce
(a1a2 . . . a l). If l ,L, the cell (a1a2 . . . a l) is also
connected to its R daughters that are labele
by (a1a2 . . . a le1),(a1a2 . . . a le2), . . . ,(a1a2 . . . a leR);
where the sequence of the firstl symbols is the same as in th
mother cell (a1a2 . . . a l). Figure 1 shows a tree with ram
fication numberR53 and depthL53, indicating the labels
on the cells.

A tree might be considered as the spatial support of s
tiotemporal dynamical processes with either discrete or c
tinuous time. We focus on reaction-diffusion and pattern f
mation phenomena on trees. The dynamical syste
considered here are defined by associating a nonlinear f
tion with each cell of a given tree and coupling these fu
tions through nearest-neighbor diffusion interaction. In t
way, a coupled map lattice describing a reaction-diffus
dynamics on a tree with ramificationR and depthL can be
expressed as

~1! Level 0 cell:

xt11~e0!5f„xt~e0!…1gF(
i 51

R

xt~e i !2Rxt~e0!G ; ~1!

~2! Level 0, l ,L cells:

xt11~a1 . . . a l !5 f „xt~a1 . . . a l !…

1gF(
i 51

R

xt~a1 . . . a le i !

1xt~a1 . . . a l 21!

2~R11!xt~a1 . . . a l !G ; ~2!

~3! Level l 5L cells:

xt11~a1 . . . aL!5 f „xt~a1 . . . aL!…1g@xt~a1 . . . aL21!

2xt~a1 . . . aL!ht#; ~3!

where xt(a1 . . . a l) gives the state of the cell labele
by (a1 . . . a l) on the tree at discrete timet; f (xt)
02620
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is a nonlinear function specifying the local dynamics; a
g is a parameter that measures the strength of the coup
among neighboring cells and plays the role of a hom
geneous diffusion constant. This type of coupling is usua
called backward diffusive coupling and corresponds to
discrete version of the Laplacian in reaction-diffusio
equations.

The above coupled map lattice equations can be gene
ized to include other coupling schemes, nonuniform co
pling, varying ramifications within the network, o
continuous-time local dynamics. Different spatiotempo
phenomena can be investigated on treelike structures by
viding appropriate local dynamics and couplings.

Equations~1!–~3! can be written in vector form as

xt115f~xt!1gMx t . ~4!

The state vectorxt possessesN componentsxt( j ), j
50, . . . ,N21, corresponding to the statesxt(a1 . . . a l) of
the cells on a tree (R,L) labeled with the sequence of sym
bols (a1 . . . a l). The matrix M expresses the couplin
among the components$xt( j )%.

The components ofxt may be ordered as follows. Th
level 0 cell is assigned the indexj 50. All other cells labeled
by (a1 . . . a l) can be associated to a unique integer ind
j 51, . . . ,N21, by the rule

~a1 . . . a l !↔ j 5
Rl21

R21
1 (

k51

l

akR
l 2k. ~5!

As an example, consider the cell labeled by the seque
~21! on the tree of Fig. 1. In this caseR53 and the
cell belongs to the levell 52. According to the rule of
Eq. ~5!, its index is j 511. Its parent is labeled by Eq.~2!,
and has the indexj 53; while its daughters, labeled b
(210), (211), and (212), are assigned indexesj 534,35, and
36, respectively.

Given this notation, thej component of the vector-value
function f(xt) is @ f(xt)# j5 f „xt( j )…. For a tree characterize
by (R,L), the elements of its corresponding coupling mat
M , denoted byM ( i , j ), (i , j 50,1, . . . ,N21), are
8-2
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M ~ i , j !5M ~ j ,i !55
2R, if i 50 andj 50

2~R11!, if i 5 j and 0, i ,~RL21!/~R21!

21, if i 5 j andi>~RL21!/~R21!

1, if iÞ j and$ j 5 int@~ i 21!/R# or i 5 int@~ j 21!/R#%

0, elsewhere,

~6!
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where int(q) means the integral part ofq. The matrixM is a
N3N real and symmetric matrix. It should be emphasiz
thatM plays the role of a spatially discrete diffusion opera
on treelike networks, analogous to the Laplacian in a s
tially continuous reaction-diffusion equation.

III. SPECTRUM OF THE COUPLING MATRIX

Similarly to reaction-diffusion processes on fractal lattic
@1#, the spatial patterns that can arise on trees are determ
by the eigenmodes of the coupling matrixM . Additionally,
the stability of the synchronized states is related to the se
eigenvalues ofM .

In order to analyze the eigenvector problem, conside
tree with ramificationR and depthL on which a spatiotem-
poral dynamics has been defined in the vector form of
~4!. The complete set of orthonormal eigenvectors of
corresponding matrixM can be described as the superpo
tion of two distinct subsets of eigenmodes. One sub
which will be denoted by$un%, comprises those eigenvecto
associated to nondegenerate eigenvalues; and the other
set contains the eigenvectors corresponding to degenera
genvalues ofM , and will be represented by$vms

g % ~the indi-
ces refer to the degeneracy, as explained below!. Thus, the
complete set of eigenvectors ofM is $un%ø$vms

g %. Each ei-
genvector describes a basic spatial pattern that may
place on a tree characterized by (R,L).

A. Nondegenerate eigenmodes

The eigenvectors ofM belonging to the nondegenera
subset$un% satisfy

Mun5bnun , n51,2, . . . ,n; ~7!

wherebn is the eigenvalue associated to the eigenvectorun .
There aren distinct eigenvectors with their correspondin
eigenvalues in this subset. Thej component of a vectorun is
@un# j5un(a1a2 . . . a l), according to the associating inde
rule, Eq.~5!. Any eigenvectorun in this subset is character
ized by the following property: all its components corr
sponding to cells of the tree lying on the same level or la
l are identical, i.e.,

un~a1a2 . . . a l !5un~b1b2 . . . b l !, ~8!

where (a1a2 . . . a l) and (b1b2 . . . b l) label any two cells
belonging to the levell. A nondegenerate eigenvector ofM
thus possesses homogeneous layers. Because of proper~8!,
we also refer to the elements of$un% aslayeredeigenvectors.
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An eigenvectorun representing a tree of depthL has (L
11) levels, including the level 0 cell. Because of the hom
geneous layer property, there can ben5L11 distinct eigen-
vectors in the subset$un% satisfying this condition; one ei
genvector for each homogeneous layer that can be form
Note that the number of different layered eigenvectors
pends only on the depthL of the tree and not on its ramifi
cationR. In particular, the spatially homogeneous eigenmo
of M , which we denote byu1, belongs to the subset$un% and
its N components are

u1~a1a2 . . . a l !5N21/2; ; l , ;ak ~9!

and

u15
1

AN
col ~1,1, . . . ,1!. ~10!

Since the eigenvectors ofM are mutually orthogonal, al
other eigenmodes, in either subset$un% or $vms

g %, must satisfy

(
a1 ,a2 , . . . ,a l

un~a1 . . . a l !50; nÞ1, ; l , ;ak ;

(
a1 , . . . ,a l

vms
g ~a1 . . . a l !50; ; l , ;ak ; ~11!

that is, the sum of the components of any other eigenve
of M different andu1 is zero.

Figure 2~a! shows the three layered eigenvectors and th
associated eigenvalues of the coupling matrix correspond
to a tree withR53 andL52.

The set of eigenvalues arising from Eq.~7! may be or-
dered by decreasing value as$b1 ,b2 , . . . ,bL ,bL11%. By
Gershgorin’s theorem@12#, the homogeneous eigenvect
possesses the largest eigenvalue ofM , which is b150. On
the other hand, for largeL the smallest eigenvalue is found t
be

lim
L→`

bL115
2~213R!2AR~41R!

2
, ~12!

and similarly, we find

lim
L→`

b25
2~R12!1AR~41R!

2
. ~13!
8-3
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FIG. 2. A tree withR53, L52. ~a! The three nondegenerate, layered eigenvectors$un%, and their corresponding eigenvalues.~b!
Degenerate eigenvectors$vms

g % and corresponding eigenvalues.
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The eigenvalues$b1 ,b2 , . . . ,bL ,bL11% appear in pairs
bn andbn8 , asbL11 andb2 above, according to the sign o
the square root term. These pairs are related by

bn1bn8522~R11!, ~14!

where

n1n85H L13

2
, if L is odd

L13, if L is even.

The eigenvalueb(L13)/2 arises wheneverL is odd, and it is
not associated with anotherbn . Its value is

b(L13)/252~R11!. ~15!

Thus, because of Eqs.~14! and~15! the eigenvalues asso
ciated to the nondegenerate eigenvectors satisfy

(
n51

n

bn52L~R11!. ~16!

Figure 3 shows the spectrum of eigenvalues$bn%, indi-
cated by black dots, for a tree with ramificationR53 at
successive depthsL. Eigenvalues associated to degener
eigenvectors ofM , to be discussed next, are also shown
Fig. 3.
02620
e

B. Degenerate eigenmodes

The subset of degenerate eigenvectors$vms
g % of the cou-

pling matrix M corresponding to a tree characterized
(R,L) satisfy

Mvms
g 5amsvms

g , ~17!

whereams is the eigenvalue associated to a group ofd de-
generate eigenvectors$vms

1 ,vms
2 , . . . ,vms

d % belonging to
$vms

g %. The indexg goes from 1 tod and counts the differen
eigenvectors associated to the degenerate eigenvalueams.
The integer indicesm ands label different eigenvaluesams.

FIG. 3. Spectrum of eigenvalues at increasing depthsL, for a
tree with ramificationR53. Eigenvalues$bn% are indicated by
black dots (d). Other symbols indicate eigenvalues$ams% as fol-
lows: a1m (n); a2m (!); a3m (3); a4m (s); a5m (1).
8-4
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PATTERN FORMATION ON TREES PHYSICAL REVIEW E64 026208
The j component of a vector$vms
g % corresponds to a cell o

the tree labeled by the rule ~5!, i.e., @vms
g # j

5vms
g (a1a2 . . . a l). The eigenmodes$vms

g % are characterized
by the following two properties,

vms
g ~a1a2 . . . a l !50; l 50,1,2, . . . ,L2m; ~18!

that is, all the components ofvms
g lying in successive levels

vanish up to the levell 5L2M ; and

(
a1a2 . . . a l

vms
g ~a1a2 . . . a l !50; ~19!

i.e., the sum of the components of an eigenvectorvms
g , lying

on the same level of the tree spatially described byvms
g , is

zero.
An eigenvectorvms

g is spatially uniform in part, having al
its components, or equivalent cells, equal to zero up to le
L2m. The indexm counts the number of remaining nonv
nishing layers in the eigenvectorvms

g , and its possible value
are m51,2, . . . ,L. Each of them nonvanishing layers may
be homogeneous, but different among each other. The in
s counts the number of possible different eigenvectors w
m different homogeneous, nonvanishing last layers. Thus
may take the valuess51,2, . . . ,m.

The indexg lifts the degeneracy of vectors with the sam
indices m and s. The remaining, nonvanishing last laye
may in fact be nonhomogeneous, and may consists of
trees with homogeneous sublevels, which would reprod
the structure of the layered nondegenerate eigenvectorsun .
The levell 5L2m is the last vanishing layer in an eigenve
tor having m nonvanishing layers. On this layer, there a
RL2m components or cells, and each of these cells gi
origin to R layered subtrees, i.e., subtrees with homogene
layers. TheseR subtrees themselves are related by the s
property of Eq.~19!, which results in (R21) linearly inde-
pendent subtrees. Therefore, the number of linearly indep
dent eigenvectorsvms

g with the same valuesm and s is d
5(R21)RL2m. The indexg expresses the degeneracy of t
eigenvectors associated to the eigenvalueams, and it may
take the valuesg51,2, . . . ,(R21)RL2m. In this way, the set
of degenerate eigenvectors$vms

g % of the matrix M corre-
sponding to a tree (R,L) is fully described.

Figure 2~b! shows the subset of degenerate eigenvec
$vms

g % and the eigenvalues corresponding to a tree chara
ized by (R,L)5(3,2).

The indexm also expresses the form in which an eige
value ams arises in the spectrum of eigenvalues ofM . An
eigenvalueams appears for the first time at a levell 5m.1
and stays in the spectrum of eigenvalues ofM at subsequen
levels up tol 5L. Thus the indexm may take the valuesm
51,2, . . . ,L. On the other hand,m different eigenvalues
arise at the level of constructionl 5m of the tree, which are
counted by the indexs51,2, . . . ,m.

The total number of distinct eigenvalues of typeams be-
longing to the spectrum of a matrixM associated to a tre
(R,L) is
02620
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m51

L

m5
L~L11!

2
. ~20!

Additionally, them eigenvaluesams that appear at a levell
5m satisfy the following property

(
s51

m

ams52~m21!~R11!21, ~21!

and therefore the total sum of eigenvaluesams for a matrix
M associated to a tree (R,L) will be

(
m51

L

(
s51

m

ams52 (
m51

L

~m21!~R11!2L

52
~R11!~L21!L

2
2L. ~22!

Figure 3 shows the spectrum of eigenvalues$ams% for a
tree with ramificationR53 at successive depthsL. Eigenval-
ues $bn% corresponding to nondegenerate eigenvectors
also shown there. Thus the distribution of the full spectru
of eigenvalues of the coupling matrixM can be seen as
function of the depth of the tree in Fig. 3. Note that the f
spectrum$bn%ø$ams% is always contained between the e
genvaluesb150 andbL11.

The total number of distinct eigenvalues ofM , including
both typesams andbn , and denoted byV, is

V5~L11!1
L~L11!

2
5

~L11!~L12!

2
. ~23!

Note that the total number of eigenvalues in the spectr
of M is determined only by the depth of the tree and
independent of its ramification, although the specific valu
of the eigenvalues do depend on bothR and L. Since there
appearm eigenvalues of typeams at each levell 5m and
there are (R21)RL2m degenerate eigenvectorsvms

g associ-
ated to each eigenvalueams, the total number of independen
eigenmodes in the subset$vms

g % is (m51
L m(R21)RL2m. In

the nondegenerated subset$un% there are (L11) indepen-
dent eigenvectors, as we saw before. Therefore, the t
number of independent eigenmodes ofM is

~L11!1 (
m51

L

m~R21!RL2m

5~L11!1~R21!RL
RL112R~L11!1L

RL~R21!2

5
RL1121

R21
5N, ~24!

as expected.
Figure 4~a! shows the complete spectrum of eigenvalu

of M and the degeneracy fraction of each eigenvalue, fo
tree characterized by parameters (R,L)5(2,11). The (L
11)512 eigenvaluesbn are indicated by dots and they a
8-5
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nondegenerate, while the degeneracyd52112m of each of
the L(L11)/2566 eigenvaluesams is plotted as a vertica
bar. It is evident that both the distribution of eigenvalues a
their degeneracies are nonuniform. Another convenient
resentation of the scaling properties of the spectrum of
genvalues of the coupling matrix can be obtained by plott
the accumulated sum of the degeneracies of all eigenva
that is the measure of the spectrum ofM ~denoted byr), on
the eigenvalue axis for largeL, as in Fig. 4~b!. The resulting
graph presents the features of a devil’s staircase, a fra
curve arising in a variety of nonlinear phenomena.

The eigenmodes of the coupling matrix reflect the top
ogy of the tree and they are analogous to the Fourier eig
modes appearing in regular Euclidean lattices. In this se
conditions in Eq.~8! and Eqs.~18!–~19! represent different
wavelengths on a tree characterized by parameters (R,L).

C. An example

As an example of calculation of eigenvectors, consi
any tree with ramificationR and depthL51. The number of
cells of the tree isN5(R221)/(R21)5R11. Thus, the
tree consists of a mother cell at levell 50 connected to itsR
daughters at levell 51. The corresponding (R11)3(R
11) coupling matrix has the form

FIG. 4. ~a! Full spectrum of eigenvalues of the coupling matr
M for a tree with R52, L511, showing their degeneracy. Fo
clarity, eigenvalues$bn% are shown with dots just below the zer
line. The vertical axis shows the degeneracy of the eigenva
$ams% divided by N, indicated by vertical bars at each eigenvalu
~b! The measure of the set of all eigenvalues ofM .
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M5S 2R 1 1 1 . . . 1

1 21 0 0 . . . 0

1 0 21 0 . . . 0

1 0 0 21 . . . 0

A A A A � A

1 0 0 0 . . . 21

D , ~25!

and the associated eigenvectors ofM have (R11) compo-
nents. There exist two nondegenerate eigenvectors, w
are the homogeneousu15(1/AR11)col(1,1, . . . ,1), andu2,
associated to the eigenvaluesb150 and b2, respectively.
There is only the eigenvaluea11 associated tod5(R21)
degenerate eigenvectors$v11

1 ,v11
2 , . . . ,v11

R21%. The total
number of independent eigenmodes ofM is (R11), and the
total number of distinct eigenvalues isV53, in agreement
with Eq. ~23!.

All the eigenvectors ofM have the levell 50, with one
component or cell; and the levell 51, for which there areR
components. The layered eigenvectoru2 will have the form
u25col(x,y,y, . . . ,y). Its eigenvalue equationMu25b2u2,
plus the normalization conditionuu2u51, yield the relations

2Rx1Ry5b2x,

x2y5b2y, ~26!

x21Ry251,

whose solutions areb252(R11), x52R/AR(R11), y
51/AR(R11). Thus,

u25
1

AR~R11!
col~2R,1,1, . . . ,1!. ~27!

On the other hand, the degenerate eigenmodev11
1 has the

form v11
1 5col(0,x1 ,x2 , . . . ,xR), satisfying properties~18!

and ~19!, as well as the eigenvector equationMv11
g

5a11v11
g and the normalization conditionuv11

g u51. These
relations lead to

(
i 51

R

xi50,

2xi5a11xi , ~28!

(
i 51

R

xi
251,

which imply that a11521. Making x15x and x25x3
5 . . . 5xR5y; we get

x1~R21!y50,
~29!

x21~R21!y251,

es
.

8-6
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PATTERN FORMATION ON TREES PHYSICAL REVIEW E64 026208
with solutions, x52(R21)/AR(R21), y51/AR(R21).
Thus

~30!

For v11
2 5col (0,0,x2 , . . . ,xR) the procedure can be re

peated by makingx25z, x35x45 . . . 5xR5w, and obtain-
ing

~31!

In general, we get

~32!

giving (R21) eigenvectors in the degenerate subset$vms
g %

for this example. With the addition of the two nondegener
eigenvectorsu1 and u2, there areN5R11 independent
eigenvectors. Therefore, all the eigenvectors and eigenva
associated to a matrixM corresponding to a tree characte
ized by parameters (R,1) are accounted for. Note that sinc
the eigenvaluea11521 appears at levell 5m51, it will
stay in the spectrum of eigenvalues ofM for all subsequent
levels of construction, i.e.,a11521 arises for trees of any
depth. Similarly, the eigenvalueb150 and its associated ho
mogeneous eigenvectoru1 always appear in a tree.

IV. BIFURCATION STRUCTURE AND STABILITY
OF SPATIALLY SYNCHRONIZED STATES

Spatially synchronized states in extended systems are
evant since we are often interested in the mechanism
which a uniform system breaks its symmetry to form a s
02620
e

es

el-
y
-

tial pattern as a parameter is changed. Consider spatially
chronized, period-K states such asxt(a1 , . . . ,a l)5 x̄k ,
;(a1 , . . . ,a l); wherex̄k , (k51,2, . . . ,K) is a period-K or-
bit of the local map,f (K)( x̄k)5 x̄k . The linear stability analy-
sis of periodic, synchronized states in coupled map lattice
carried out by the diagonalization ofM in Eq. ~4!, and it
leads to the conditions@13#

)
k51

K

@ f 8~ x̄k!1gm#561, ~33!

wherem is an eigenvalue, in either set$bn% or $ams%, of the
coupling matrix M describing a tree (R,L). There areV
5(L11)(L12)/2 different values ofm @Eq. ~23!# to be
used in Eqs.~33!.

The nonuniform distribution of the eigenvalue spectrum
manifested in the stability of the synchronized states thro
this relation and give rise to important differences wh
compared, for instance, with the bifurcation structure
regular lattices. As an application, consider a local dynam
described by the logistic map,f (x)5lx(12x). In this case,
the bifurcation conditions, Eq.~33!, for the periodK52p,
synchronized state on a tree characterized by parame
(R,L) can be expressed as the set of curves

SL
p~m![)

k51

2p

@l~122x̄k!1gm#561. ~34!

For each sign, Eqs.~34! yield (L11)(L12)/2 boundary
curves in the plane (g,l) that determine the stability region
of the period 2p, synchronized states on the tree.

The scaling structure for the period 2p, synchronized
states in trees is similar to that of a any lattice described b
diffusive coupling matrix, since the form of Eq.~34! is the
same in any case. As for any lattice~for example regular
Euclidean lattices@13# or fractal lattices@1#!, the stability
regions for the period 2p, synchronized states in the (g,l)
plane scale asl;d2p, and g;a2p, where d54.669 . . .
anda522.502 . . . areFeigenbaum’s scaling constants f
the period doubling transition to chaos. However, the spec
structure of the eigenvalue spectrum of the coupling ma
determines the shapes and gaps of the regions of stabilit
synchronized, periodic states.

The boundary curves of Eqs.~34! for the synchronized,
fixed point state (p50) are given by the straight lines

l5mg11, l5mg13, ~35!

which are first crossed for the most negative eigenvaluem
5bL11. Figure 5~a! shows the boundary curves Eq.~34! in
the plane (g,l) for the period-two (p51) synchronized
state on a tree with (R,L)5(3,3), which are given by the
two sets
8-7
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S3
1~bn!52l212l141gbn~gbn22!561; n51,2,3,4;

~36!

and

S3
1~ams!52l212l141gams~gams22!561; ~37!

m51,2,3; s51, . . . ,m.

The boundary between the synchronized, fixed point s
and the synchronized period-two state is atl53. The upper
boundaries@corresponding to21 in the rhs of Eqs.~36! and
~37!# have minimalmin511A5 at valuesgmin51/bn and
gmin51/ams ~for any period 2p, lmin depends onp). Figure
5~b! shows a magnification of Fig. 5~a! around the minima of
the upper boundaries. The distribution of the minimagmin
and the presence of nonuniformly distributed gaps~niches!
in the boundary curves reflect the nonuniform structure
the eigenvalue spectrum. Since the nonuniformity in the d
tribution of eigenvalues persists at any depthL of a tree, this
property allows for regions of stability of the synchroniz

FIG. 5. ~a! The boundary curvesS3
1561 given by Eqs.~36!–

~37! for the period two, synchronized states of a tree withR53,
L53. The curveS3

1(b4)511 is signaled by arrows. The uppe
curves correspond to the r.h.s equal to21 for both types of eigen-
values. The interior region bounded by these curves is where st
synchronized, period-two states exist in the plane (g,l). b! Magni-
fication of the upper curves in~a! showing the gaps in the stabilit
boundary of the period two, synchronized states. Curves co
sponding to several eigenvalues are indicated by arrows. The c
just beyond the boundaryS3

1(a22)521 indicates the parametersg
andl used in Fig. 6.
02620
te

f
-

states ~niches! characteristic of trees and which are n
present in other geometries, for example in regular lattic
where the distribution of eigenvalues of the coupling mat
is uniform and continuous in the limit of infinite size lattice

The set of eigenvectors$un%ø$vms
g % of the coupling ma-

trix M constitute a complete basis~normal modes! on which
a statext of the system can be represented as a linear c
bination of these vectors. The evolution ofxt then reflects the
stabilities of the normal modes. Figure 5~b! shows how the
synchronized state may become unstable through crossin
the upper boundary; the first boundary segment crossed
termines the character of the instability. For example, c
sider an initial state consisting of a small perturbation of
synchronized, period-two state at parameter values just
yond the boundary segment corresponding toa22 indicated
by a cross in Fig. 5~b!, where this initial state is unstable
The inhomogeneous period-four final spatial pattern is r
resented in Fig. 6; it corresponds to a linear combination
the six eigenmodes$v22

g ;g51, . . . ,6% associated with the
degenerate eigenvaluea22 of the matrixM corresponding to
the tree (R,L)5(3,3). All other modes are unstable in th
region of parameter space. For any depthL of the tree, and
any period 2p, the boundary curveS3

1(a22)521 separates a
niche of the synchronized state from the stable region for
eigenmodesv22

g corresponding toa22. Thus, a transition be-
tween these two spatial patterns can always be observe
the appropriate regions of the (g,l) plane.

V. CONCLUSIONS

In a system of interacting agents, such as the models
sented in this article, the coupling matrix contains the co
nectivity of the network and it determines the spatial patte
that can arise in the system. The underlying inhomogene
structure of trees has pronounced effects on the spatial
terns that can be formed by reaction-diffusion processes
these lattices. The spatial patterns are determined by
eigenvectors of the coupling matrixM ; and the stability of
the synchronized states is determined by the correspon
eigenvalues. The set of normal modes of the coupling ma
reflect the connectivity of the tree. These modes have c
plex spatial forms but they are analogous to the Fou
eigenmodes arising in regular Euclidean lattices. On
other hand, the distribution of eigenvalues ofM and their
degeneracies are nonuniform. These features affect the b
cation properties of dynamical systems such as coupled
defined on trees. The scaling structure of the synchroniz

le,

e-
ss

FIG. 6. Inhomogeneous, period-4 state at parameter valueg
520.22, l53.2367 for a tree withR53, L53. This pattern is a
linear combination of the six eigenmodes associated to the ei
valuea22. White corresponds to a zero value and black to a va
equal to one.
8-8
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period-doubled states is similar for both uniform and hier
chical lattices, but the nature of the bifurcation boundarie
different. For trees, the boundary curves are determined
the spectrum of eigenvalues of the coupling matrix, wh
has a nonuniform density. The nonuniform distribution
eigenvalues leads to gaps or niches in the boundary cu
that are not present for coupled maps on uniform lattic
where the spectrum of eigenvalues is continuous.

We have examined only the simplest spatiotemporal p
terns that can be formed on treelike geometries; however
formalism presented in Sec. II can be applied to many ot
processes, such as nontrivial collective behavior, excita
waves, phase transitions, domain segregation, and growt
trees. The formalism is also useful for continuous-time lo
v.

try
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dynamics. Similarly, extensions of this work are possible
order to include networks with variable ramification and/
depths.

The study of dynamical systems defined on trees
other nonuniform substrates should allow us to gain insi
into previously unexplored spatiotemporal phenomena on
homogeneous systems and to understand better the rela
ship between topology and collective properties of networ
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