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The emergence of nontrivial collective behavior in networks of coupled chaotic maps is investigated by
means of a nonlinear mutual prediction method. The resulting prediction error is used to measure the amount
of information that a local unit possesses about the collective dynamics. Applications to locally and globally
coupled map systems are considered. The prediction error exhibits phase transitions at critical values of the
coupling for the onset of ordered collective behavior in these networks. This information measure may be used
as an order parameter for the characterization of complex behavior in extended chaotic systems.
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Much interest has recently been directed to understandingx} ,x!_,, ... x!_,.). Then, for each of these vectors, we
the phenomenon of emergence of nontrivial collective besystematically look for its nearest  neighbor
havior in systems of interacting chaotic elemefits Non- (xip,xip_l, o vxi;)—d+1) in the Euclidean distance, as shown

trivial collective behavioNTCB) is characterized by a well- Fig. 1. The root-mean-square error ovgrat the embed-
defined evolution of macroscopic quantities emerging out OHing dimensiord is computed as
local chaos. Models based on coupled map networks have

been widely used in the investigation of cooperative phe- (hys1—hy )2 Y2
nomena that appear in many extended chaotic dynamical Eq(h|x)= thl prl ' (1)
systemg?2]. In particular, NTCB has been studied in coupled o

maps on regular Euclidean latticgs 3], in one-dimensional
lattices[4], fractal geometrieg5], and globally coupled map P i . o
systemg6-9]. In this article, we investigate the information the time index ok, , ando is the standard deviation &, .

transfer between the local and global levels of coupled map The prediction error given by E@l) can be interpreted as

network models as a condition for self-organization in spa2 Mmeasure of the information that the serigspossesses
bout the macroscopic variablg. In this context, small

tiotemporal systems. One may ask the questions: How muc ‘ >
information does a local unit possess about the collectivé/alues of Eq(h|x) imply that the dynamics of the global
dynamics of a system? or how does the information flow

whereh,, is the value of the macroscopic variable that bears

depend on parameters of the system? h X

To analyze how global order in spatiotemporal systems
can arise out of local chaos, we consider a systenN of :
interacting elements, where the state of elementi : =il
=1,2,...N) at discrete time is denoted by, . The evolu- x(t:_l) e,
tion of each element is assumed to depend on its own local h(t) (1) |
map dynamics and on its interaction with other elements in P h(t+1) x(+1) | | Nearcst
the network, where the strength of the interactions is given : : :Ne‘ghb“s
by a coupling parameter. The collective dynamics of the sys- E(hix) |
tem at timet may be described by some statistical variable : P e
h,, such as the mean field. The information transfer between 3 L
local (x}) and macroscopich() variables is analyzed by -E(p)1 X(")l
comparing their corresponding time evolutions. We adopt a (p+ y x(l;”)
simple computational technique based on a mutual nonlinear : :
modeling[10,11. This method makes use of the temporal

evolution of a driven variabléwhich is receiving informa-
tion) to infer characteristics of the driver variable. In our

case, fqr d'ﬁer_ent valugs_ of the _COUp“ng parametgr W eriesxi consists of performing a search of nearest neighboos in
record time series containing the simultaneous evolution Ofshaded boxes. search is denoted by dashed aramasthen com-

the macroscopic quantity, and of a chosen local variable paring the consecutive statésolid arrow of the corresponding

Xlt : _ simultaneous states m (denoted by dot-dashed arrow$he com-
The trajectory of the series is reconstructed in an em- parison is penalized by the calculation of the root mean square of

bedding space of dimensiod as a collection of vectors the differences.

FIG. 1. The mutual nonlinear modeling dpwith the collateral
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guantityh, is embedded in the local evolution. Larger mutual - -
prediction errors indicate that the two time series become Xtp1= (1= O)f(x) +5 [f(X )+E(x )] (©)
more independent of each other. In particular, for two totally

independent random series the error EX).has a value of \here periodic boundary conditions are assumed in(8g.

V2. As the macroscopic variable for these systems we con-

As applications, we have calculated the eigth|x) asa  sider the instantaneous mean field, defined as
function of the coupling strength in coupled map systems

exhibiting NTCB. This quantity was computed for several N
embedding dimensiond and the curve giving minimal er- _i 2 (XJ (4
rors was selected in each case. he= N =
The first example is a system of maps subjected to global
coupling defined as Each of the above examples presents nontrivial collective
behavior in some range of their parameters. Figu(@ 2
shows the bifurcation diagram of the mean fidéldof the
e N homogeneous globally coupled map system, &), as a
X, =(1—e)fi(x)+ N E f(x}), 2 funpuon of the coupling strength [9]. The Ioca}l parameter
=1 is fixed atb=0 for all maps and the system sizeNs=10°.
For each value ok, the mean field was calculated at each
time step during a run starting from random initial conditions
where the functionf;(x;) describes the local dynamics of on the local maps, uniformly distributed on the interval
elementi, ande is the coupling parameter. The usual homo-[ —8,4], after discarding the transients. When the local pa-
geneous globally coupled map systd6] corresponds t0 rameterb is in the rangd — 1,1], the elements| are chaotic
having the same local function for all the elements, i.e.and desynchronizelee Fig. 2c)]. However, the mean field
fi(xt)=f(xy). As local dynamics, we employ the logarithmic in Fig. 2(a) reveals the existence of global periodic attractors
map f(x)=b+In[x [12], whereb is a real parameter. This for some intervals of the coupling. Different collective states
map does not belong to the standard classes of universaligmerge as a function of the couplirg a turbulent phase,
of unimodal or bounded maps. Robust chaos occurs in th@hereh, manifests itself as a fixed point, following the stan-
parameter intervabe[ —1,1], with no periodic windows dard statistical behavior of uncorrelated disordered variables;
and no separated chaotic bands on this intef¢dl]. In a  collective periodic states; collective chaotic bands; and cha-
second example, heterogeneity in the local maps ifBds  otic synchronizatioi9]. In this representation, collective pe-
introduced by takind; (x;) = b; +In|x], with the values of the riodic states at a given value of the coupliagppear as sets

parameterd; distributed in[ —1,1]. of vertical segments which correspond to intrinsic fluctua-
The last example is a one-dimensional, homogeneous, ditions of the periodic orbits of the mean field. Increasing the
fusively coupled logarithmic map lattice given by system sizeN does not decrease the amplitude of the collec-
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tive periodic orbits. Moreover, whei is increased the neity can be detected by the quantity(h|x) as a change in
widths of the segments that make a periodic orbit in thethe character of the transition to collective behavior when
bifurcation diagrams such as in Fig(a@ shrink, indicating compared to a similar transition in a homogeneous globally
that the global periodic attractors become better defined igoupled system, Fig.(d).

the large system limit. Figure(B) showsE;(h|x) vs e. An The emergence of nontrivial collective behavior can also
abrupt change in the value of the quantiB(h|x) can  pe observed in the one-dimensional coupled map lattice, Eq.
clearly be seen at a critical value of the coupling=0.21,a  (3), as shown in Fig. @). In this case the system presents
behavior characteristic of a first order phase transition. Apnly a turbulentstatistical fixed pointphase and a period-2
this critical value of the coupling the collective behavior .qective statd4]. Figure 4b) showsE,(h|x) as a function
changes from a turbulent phase to a periodic collective statey o coupling in the one-dimensional coupled map lattice.

as 'observed in F|g.(a). The error for'e< €c |s'Iarge, |r)d|- There is again a decrease in the error at the critical value of
cating that there is no appreu_able information sharing .be.fhe coupling strength for which the transition from turbu-
tween the local and macroscopic levels when the system is Rnce to periodic collective states occurs. We have observed

tohueS|tutrct)>ljllg;1t Spmhgﬁ?/-a:;c:’: .EFCh;hI% czrlrarni?rsczj%sdgr;slc%rgi:r:)%e %imilar transitions from large to small values in the quantity
y y ' y 4(h[x) at the onset of NTCB in networks having other con-

“aware” of the collective dynamics; the time series of a . . . .
single map is good enough to provide assertive predictions di€cting topologies, as well as when employing unimodal
the mean field evolution. Thus, there is a large amount ofh@0tic maps as local dynamics.
information transfer from the collective dynamics to each of ~1he logarithmic map has been employed as local dynam-
the elements in the network, even before synchronization i¥S in the above examples because the emergence of ordered
achieved. Increasing the coupling beyond the synchronizecollective behavior in those coupled systems cannot be at-
tion region leads again to a turbulent state of the system anidibuted to the existence of windows of periodicity nor to
to a large value of the errdg;(h|x). chaotic band splitting in the local dynamics. These systems
Figure 3a) shows the bifurcation diagram &f vs e for ~ can be chaotic at a local level and simultaneously periodic at
the globally coupled heterogeneous map lattice. In this casa macroscopic level. Thus, there should exist some global
the local parameterb; are set at random with a uniform information sharing among the elements of the networks that
distribution in the chaotic interval, i.eb;e[—1,1]. Again  leads to a collective organization besides the trivial synchro-
the local dynamics are chaotic, yet collective periodic behavnization. The information transfer required for the onset of
ior arise in some windows of the coupling parameter. Figurenontrivial collective behavior takes place at some specific
3(b) shows the erroiEz(h|x) vs e for the heterogeneous values of the parameters of the systems. The observed de
globally coupled system. In this case the prediction errocreasing of the errors at the transition to nontrivial collective
stays large up to a critical value of the coupliag=0.04 and  behavior can be interpreted as a manifestation of the emer-
then decreases continuously fer e.. The decrease in the gence of organization in these systems. It should be noticed
prediction error resembles a second order phase transitiothat in all cases the dynamics of the elements do not experi-
The emergence of collective periodic behavior is manifeste@nce notable change before and after the transition to non-
in the low values of the error fot>¢.. The disorder intro- trivial collective behavior, since local dynamics is always
duced in the globally coupled network by the local heterogechaotic.
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In conclusion, we have shown that the erky(h|x) isa  study coupled chaotic map systems, such as the collective
useful quantity to characterize the transition to ordered coltyapunov exponeni8] or transfer entropy13], is an inter-
lective behavior in chaotic spatiotemporal systems. Connecesting problem for future research.
tivity and coupling strengths are the mechanism for informa-
tion flow in networks of dynamical units. However, our
results suggest that transference of the information that is M.G.C. and A.P. acknowledge support from Consejo de
relevantfor the emergence of collective organization in sys-Desarrollo Cienfico, Humanstico y Tecnolgico of Univer-
tems of interacting chaotic elements is associated with lovgidad de Los Andes, Migla, Venezuela. L.C. thanks Consejo
values ofE4(h|x). Finally, the exploration of a possible re- Nacional de Investigaciones Ciéiitas y Tecnolgicas, Ven-
lationship betweenEy(h|x) and other quantities used to ezuela, for support.
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