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Information transfer and nontrivial collective behavior in chaotic coupled map networks
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The emergence of nontrivial collective behavior in networks of coupled chaotic maps is investigated by
means of a nonlinear mutual prediction method. The resulting prediction error is used to measure the amount
of information that a local unit possesses about the collective dynamics. Applications to locally and globally
coupled map systems are considered. The prediction error exhibits phase transitions at critical values of the
coupling for the onset of ordered collective behavior in these networks. This information measure may be used
as an order parameter for the characterization of complex behavior in extended chaotic systems.
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Much interest has recently been directed to understan
the phenomenon of emergence of nontrivial collective
havior in systems of interacting chaotic elements@1#. Non-
trivial collective behavior~NTCB! is characterized by a well
defined evolution of macroscopic quantities emerging ou
local chaos. Models based on coupled map networks h
been widely used in the investigation of cooperative p
nomena that appear in many extended chaotic dynam
systems@2#. In particular, NTCB has been studied in coupl
maps on regular Euclidean lattices@1,3#, in one-dimensional
lattices@4#, fractal geometries@5#, and globally coupled map
systems@6–9#. In this article, we investigate the informatio
transfer between the local and global levels of coupled m
network models as a condition for self-organization in s
tiotemporal systems. One may ask the questions: How m
information does a local unit possess about the collec
dynamics of a system? or how does the information fl
depend on parameters of the system?

To analyze how global order in spatiotemporal syste
can arise out of local chaos, we consider a system oN
interacting elements, where the state of elementi ( i
51,2, . . . ,N) at discrete timet is denoted byxt

i . The evolu-
tion of each element is assumed to depend on its own l
map dynamics and on its interaction with other elements
the network, where the strength of the interactions is giv
by a coupling parameter. The collective dynamics of the s
tem at timet may be described by some statistical varia
ht , such as the mean field. The information transfer betw
local (xt

i) and macroscopic (ht) variables is analyzed by
comparing their corresponding time evolutions. We adop
simple computational technique based on a mutual nonlin
modeling @10,11#. This method makes use of the tempo
evolution of a driven variable~which is receiving informa-
tion! to infer characteristics of the driver variable. In o
case, for different values of the coupling parameter
record time series containing the simultaneous evolution
the macroscopic quantityht and of a chosen local variabl
xt

i .
The trajectory of the seriesxt

i is reconstructed in an em
bedding space of dimensiond as a collection of vectors
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(xt
i ,xt21

i , . . . ,xt2d11
i ). Then, for each of these vectors, w

systematically look for its nearest neighb
(xp

i ,xp21
i , . . . ,xp2d11

i ) in the Euclidean distance, as show
in Fig. 1. The root-mean-square error overht at the embed-
ding dimensiond is computed as

Ed~hux!5
^~ht112hp11!2&1/2

s
, ~1!

wherehp is the value of the macroscopic variable that be
the time index ofxp

i , ands is the standard deviation ofht .
The prediction error given by Eq.~1! can be interpreted a

a measure of the information that the seriesxt
i possesses

about the macroscopic variableht . In this context, small
values of Ed(hux) imply that the dynamics of the globa

FIG. 1. The mutual nonlinear modeling onht with the collateral
seriesxt

i consists of performing a search of nearest neighborsx
~shaded boxes, search is denoted by dashed arrows! and then com-
paring the consecutive states~solid arrow! of the corresponding
simultaneous states inht ~denoted by dot-dashed arrows!. The com-
parison is penalized by the calculation of the root mean squar
the differences.
©2002 The American Physical Society04-1
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FIG. 2. ~a! Bifurcation diagramht vs e for
homogeneous globally coupled maps, withb50.
Four different phases are observed ase is varied:
turbulent (T), periodic (P), chaotic bands (C),
and synchronized (S). ~b! E3(hux) vs e for this
system.~c! Bifurcation diagram of a local mapxt

i

vs e, exposing the underlying chaotic dynamics
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quantityht is embedded in the local evolution. Larger mutu
prediction errors indicate that the two time series beco
more independent of each other. In particular, for two tota
independent random series the error Eq.~1! has a value of
A2.

As applications, we have calculated the errorEd(hux) as a
function of the coupling strength in coupled map syste
exhibiting NTCB. This quantity was computed for seve
embedding dimensionsd and the curve giving minimal er
rors was selected in each case.

The first example is a system of maps subjected to glo
coupling defined as

xt11
i 5~12e! f i~xt

i !1
e

N (
j 51

N

f j~xt
j !, ~2!

where the functionf i(xt
i) describes the local dynamics o

elementi, ande is the coupling parameter. The usual hom
geneous globally coupled map system@6# corresponds to
having the same local function for all the elements, i
f i(xt

i)5 f (xt
i). As local dynamics, we employ the logarithm

map f (x)5b1 lnuxu @12#, whereb is a real parameter. Thi
map does not belong to the standard classes of univers
of unimodal or bounded maps. Robust chaos occurs in
parameter intervalbP@21,1#, with no periodic windows
and no separated chaotic bands on this interval@12#. In a
second example, heterogeneity in the local maps in Eq.~2! is
introduced by takingf i(xt

i)5bi1 lnuxt
iu, with the values of the

parametersbi distributed in@21,1#.
The last example is a one-dimensional, homogeneous,

fusively coupled logarithmic map lattice given by
04520
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xt11
i 5~12e! f ~xt

i !1
e

2
@ f ~xt

i 11!1 f ~xt
i 21!#, ~3!

where periodic boundary conditions are assumed in Eq.~3!.
As the macroscopic variable for these systems we c

sider the instantaneous mean field, defined as

ht5
1

N (
j 51

N

f j~xt
j !. ~4!

Each of the above examples presents nontrivial collec
behavior in some range of their parameters. Figure 2~a!
shows the bifurcation diagram of the mean fieldht of the
homogeneous globally coupled map system, Eq.~2!, as a
function of the coupling strengthe @9#. The local parameter
is fixed atb50 for all maps and the system size isN5104.
For each value ofe, the mean field was calculated at ea
time step during a run starting from random initial conditio
on the local maps, uniformly distributed on the interv
@28,4#, after discarding the transients. When the local p
rameterb is in the range@21,1#, the elementsxt

i are chaotic
and desynchronized@see Fig. 2~c!#. However, the mean field
in Fig. 2~a! reveals the existence of global periodic attracto
for some intervals of the coupling. Different collective stat
emerge as a function of the couplinge: a turbulent phase
whereht manifests itself as a fixed point, following the sta
dard statistical behavior of uncorrelated disordered variab
collective periodic states; collective chaotic bands; and c
otic synchronization@9#. In this representation, collective pe
riodic states at a given value of the couplinge appear as sets
of vertical segments which correspond to intrinsic fluctu
tions of the periodic orbits of the mean field. Increasing t
system sizeN does not decrease the amplitude of the coll
4-2
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FIG. 3. ~a! Bifurcation diagramht vs e for
heterogeneous globally coupled maps; syst
size isN5104. ~b! E3(hux) vs e for this network.
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tive periodic orbits. Moreover, whenN is increased the
widths of the segments that make a periodic orbit in
bifurcation diagrams such as in Fig. 2~a! shrink, indicating
that the global periodic attractors become better define
the large system limit. Figure 2~b! showsE3(hux) vs e. An
abrupt change in the value of the quantityE3(hux) can
clearly be seen at a critical value of the couplingec.0.21, a
behavior characteristic of a first order phase transition.
this critical value of the coupling the collective behavi
changes from a turbulent phase to a periodic collective st
as observed in Fig. 2~a!. The error fore,ec is large, indi-
cating that there is no appreciable information sharing
tween the local and macroscopic levels when the system
the turbulent phase. Fore.ec the error drops discontinu
ously to very small values. The local unit suddenly becom
‘‘aware’’ of the collective dynamics; the time series of
single map is good enough to provide assertive prediction
the mean field evolution. Thus, there is a large amoun
information transfer from the collective dynamics to each
the elements in the network, even before synchronizatio
achieved. Increasing the coupling beyond the synchron
tion region leads again to a turbulent state of the system
to a large value of the errorE3(hux).

Figure 3~a! shows the bifurcation diagram ofht vs e for
the globally coupled heterogeneous map lattice. In this c
the local parametersbi are set at random with a uniform
distribution in the chaotic interval, i.e.,biP@21,1#. Again
the local dynamics are chaotic, yet collective periodic beh
ior arise in some windows of the coupling parameter. Fig
3~b! shows the errorE3(hux) vs e for the heterogeneou
globally coupled system. In this case the prediction er
stays large up to a critical value of the couplingec.0.04 and
then decreases continuously fore.ec . The decrease in the
prediction error resembles a second order phase transi
The emergence of collective periodic behavior is manifes
in the low values of the error fore.ec . The disorder intro-
duced in the globally coupled network by the local hetero
04520
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neity can be detected by the quantityE3(hux) as a change in
the character of the transition to collective behavior wh
compared to a similar transition in a homogeneous glob
coupled system, Fig. 2~a!.

The emergence of nontrivial collective behavior can a
be observed in the one-dimensional coupled map lattice,
~3!, as shown in Fig. 4~a!. In this case the system presen
only a turbulent~statistical fixed point! phase and a period-2
collective state@4#. Figure 4~b! showsE2(hux) as a function
of the coupling in the one-dimensional coupled map latti
There is again a decrease in the error at the critical valu
the coupling strength for which the transition from turb
lence to periodic collective states occurs. We have obser
similar transitions from large to small values in the quant
Ed(hux) at the onset of NTCB in networks having other co
necting topologies, as well as when employing unimo
chaotic maps as local dynamics.

The logarithmic map has been employed as local dyna
ics in the above examples because the emergence of ord
collective behavior in those coupled systems cannot be
tributed to the existence of windows of periodicity nor
chaotic band splitting in the local dynamics. These syste
can be chaotic at a local level and simultaneously periodi
a macroscopic level. Thus, there should exist some glo
information sharing among the elements of the networks
leads to a collective organization besides the trivial synch
nization. The information transfer required for the onset
nontrivial collective behavior takes place at some spec
values of the parameters of the systems. The observed
creasing of the errors at the transition to nontrivial collect
behavior can be interpreted as a manifestation of the em
gence of organization in these systems. It should be not
that in all cases the dynamics of the elements do not exp
ence notable change before and after the transition to n
trivial collective behavior, since local dynamics is alwa
chaotic.
4-3
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FIG. 4. ~a! Bifurcation diagramht vs e for
one-dimensional coupled map lattice;N5104

andb50. ~b! E2(hux) vs e for this lattice.
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In conclusion, we have shown that the errorEd(hux) is a
useful quantity to characterize the transition to ordered c
lective behavior in chaotic spatiotemporal systems. Conn
tivity and coupling strengths are the mechanism for inform
tion flow in networks of dynamical units. However, ou
results suggest that transference of the information tha
relevantfor the emergence of collective organization in sy
tems of interacting chaotic elements is associated with
values ofEd(hux). Finally, the exploration of a possible re
lationship betweenEd(hux) and other quantities used t
f
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study coupled chaotic map systems, such as the collec
Lyapunov exponent@8# or transfer entropy@13#, is an inter-
esting problem for future research.
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