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We show that the synchronized states of two systems of identical chaotic maps subject to either,
a common drive that acts with a probability p in time or to the same drive acting on a fraction p of
the maps, are similar. The synchronization behavior of both systems can be inferred by considering
the dynamics of a single chaotic map driven with a probability p. The synchronized states for these
systems are characterized on their common space of parameters. Our results show that the presence
of a common external drive for all times is not essential for reaching synchronization in a system of
chaotic oscillators, nor is the simultaneous sharing of the drive by all the elements in the system.
Rather, a crucial condition for achieving synchronization is the sharing of some minimal, average
information by the elements in the system over long times.

PACS numbers: 05.45.-a, 05.45.Xt, 05.45.Ra

Chaos synchronization has attracted much interest
from both scientists and engineers by providing insights
into natural phenomena and motivation for practical ap-
plications in communications and control [Pecora & Car-
roll, 1990; Boccaletti et al., 2002; Uchida et al., 2005;
Argyris et al., 2005; Pikovsky et al., 2002]. This phe-
nomenon is commonly observed in unidirectionally cou-
pled systems, where a distinction can be made between a
drive or forcing subsystem and another driven or response
subsystem that possesses chaotic dynamics [Pikovsky et
al., 2002]. Complete synchronization occurs when the
state variables of the driving and the response subsystems
converge to a single trajectory in phase space. On the
other hand, generalized synchronization of chaos arises
when a functional relation different from the identity is
established between the drive and the response subsys-
tems [Rulkov et al., 1995; Abarbanel et al., 1996; Kapi-
taniak et al., 1996; Hunt et al., 1997; Parlitz & Kokarev,
1999; Zhou & Roy, 2007].

Periodic, chaotic, or stochastic drives have been shown
to induce generalized synchronization in chaotic systems
[Maritan & Banavar, 1994; Pikovsky et al., 2002]. The
auxiliary system approach [Abarbanel et al., 1996] shows
that when a response and a replica subsystems are driven
by the same signal, then the orbits in the phase spaces
of the response and replica subsystems become identi-
cal and they can evolve on identical attractors, if their
initial conditions lie on the same basin of attraction of
the driven-response system. By extension, an ensemble
of identical chaotic oscillators can also be synchronized
by a common drive. The specific functional form of the
drive is not essential; the basic mechanism that leads to
synchronization is the sharing of the same information
by the oscillators for all times. In fact, it is has recently
been shown that the source of the common influence be-
ing received by the elements in an extended system is
irrelevant; it could consist of an external drive, or an
autonomous global interaction field [Alvarez-Llamoza &
Cosenza, 2008]. At the local level, each element in the

system is subject to a source that eventually induces com-
plete or generalized synchronization between the source
and the element.

In this paper, we explore another mechanism for syn-
chronization of a system of driven chaotic elements. We
consider a system of chaotic elements where the exter-
nal drive acts intermittently on all the elements with a
probability p. From the analysis of the dynamics at the
local level, we extend the auxiliary system approach to a
situation where the drive is applied only to a fraction p of
randomly chosen elements in a system. We show that the
complete synchronized states in both, the intermittently
and the partially driven systems, are equivalent. Our re-
sults show that the presence of a common drive for all
times is not indispensable for reaching synchronization in
an extended system of chaotic oscillators, nor is the si-
multaneous sharing of the drive by all the elements in the
system. Our work is motivated by the practical aspect
of searching for minimal requirements for the emergence
of synchronization in dynamical systems.

We search for minimal conditions for the occurrence
of synchronization of chaos by using models of coupled
maps. Let us consider a system of N uniformly, inter-
mittently driven maps, defined as

∀i, xi
t+1 =

{

s(xi
t, yt), with probability p

f(xi
t), with probability (1 − p)

yt+1 = g(yt),

(1)

where xi
t (i = 1, 2, . . . , N) gives the state of the ith map

at discrete time t, ǫ is the strength of the coupling to the
drive g(yt). Each map is subject to the same external in-
fluence (or lack of it) at any time. The coupling function
is chosen to have the diffusive form

s(xi
t, yt) = (1 − ǫ)f(xi

t) + ǫg(yt) . (2)

We assume a chaotic driven dynamics given by a sin-
gular map belonging to the family f(xt) = b + |xt|

z ,
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where |z| < 1, b is a real parameter and xt ∈ (−∞,∞).
These singular maps exhibit robust chaos, with no pe-
riodic windows in a finite interval of the parameter b
[Alvarez-Llamoza et al., 2008]. Robustness is an impor-
tant property in applications that require reliable oper-
ation under chaos in the sense that the chaotic behavior
cannot be destroyed by small perturbations of the system
parameters. In particular, we employ the value z = −0.5
for which the corresponding map displays robust chaotic
dynamics in the range b ∈ [0.62996, 1.88988].

A completely synchronized state in the system Eq. (1)
is given by xi

t = xt = yt, ∀i, and it can occur when g = f .
On the other hand, if g 6= f , generalized synchroniza-
tion, characterized by the condition xi

t = xt 6= yt, may
also arise in this system for p ≤ 1. A synchronized state
can be characterized by the asymptotic time-average 〈σ〉
(after discarding a number of transients) of the instanta-
neous standard deviations σt of the distribution of map
variables xi

t, defined as

σt =

[

1

N

N
∑

i=1

(

xi
t − 〈xt〉

)2

]1/2

, (3)

where 〈xt〉 is the instantaneous mean of the values xi
t, ∀i.

Stable synchronization corresponds to 〈σ〉 = 0. Here we
use the numerical criterion 〈σ〉 < 10−7. Figure 1 shows σt

as a function of time for the intermittently driven system
Eq. (1) subject to different chaotic drives g.
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FIG. 1: σt vs. t for the system of driven maps Eq. (1) with
N = 104 and f(x) = 1.2 + |x|−0.5, for different forms of the
drive g(yt). Initial conditions were randomly and uniformly
distributed such that xi

0 ∈ [0, 10]. The drive g(yt) is applied
with probability p starting at t = 1000. (a) g(yt) = 1.2 +
|yt|

−0.5, ǫ = 0.7, p = 0.6 (complete synchronization). (b)
g(yt) = 1−2y2

t , ǫ = 0.8, p = 0.8 (generalized synchronization).

For a given value of the coupling strength ǫ, there is
a threshold value of the probability p required to reach
either type of synchronization. Figure 2 shows the re-

gions for the complete synchronized states for the sys-
tem Eq. (1) on the space of parameters (p, ǫ) for different
orbits of a drive g = f . In particular, when g = f ,
complete synchronization into an unstable period-m or-
bit of the map f , defined by f (m)(xn) = xn and satisfying
∏m

n=1 |f
′(xn)| > 1, where {x1, x2, . . . , xm} are the set of

consecutive points on this orbit, can also be achieved in
the system Eq. (1), as shown in Fig. 2.
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FIG. 2: Regions for completely synchronized (CS) states
(〈σ〉 < 10−7, after discarding 104 iterates) on the plane (p, ǫ)
for the system of intermittently driven maps, Eq. (1) with
f(x) = 1.2 + |x|−0.5, N = 104. Dashed line: g(yt) = x1 =
−0.393713; solid line: g(yt) = 1.2 + |yt|

−0.5; dotted line:
g(yt) = {x1 = 0.204805, x2 = −1.00968}. The boundaries
also indicate the onset of stability of those same complete syn-
chronized states in the partially driven system, Eq. (9). The
boundaries that separate the stable from the unstable regions
are given by the corresponding curve Λx = 0 (Eq. (8)) for the
driven single map, Eq. (4).

Figure 3 shows the regions for the generalized synchro-
nized states of the system Eq. (1) on the space of param-
eters (p, ǫ), with a drive g 6= f .

Since each map in the intermittently driven system
Eq. (1) experiences the same external influence (or none)
at any time, the properties of this system can be analyzed
from the behavior of the individual local dynamics. Thus,
we consider a single, intermittently driven map

xt+1 =

{

s(xt, yt), with probability p

f(xt), with probability (1 − p),

yt+1 = g(yt),

(4)

where xt is the driven or response variable, yt is the drive
and s(xt, yt) has the same functional form as in Eq. (2).
The auxiliary system approach [Abarbanel et al., 1996]
implies that a driven map can synchronize on identical
orbits with another, identically driven map. Thus, the
occurrence of stable synchronization in the single map
Eq. (4) should lead to synchronization in the extended
system of maps Eq. (1), even when the drive acts inter-
mittently in both cases.
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The single driven map Eq. (4) can be regarded as
a two-dimensional system. The linear stability condi-
tion for synchronization requires the knowledge of the
Lyapunov exponents for such system. These are de-
fined as Λx = limT→∞ lnLx and Λy = limT→∞ lnLy,
where Lx and Ly are the magnitude of the eigenvalues of

[
∏T−1

t=0 J(xt, yt)]
1/T , and J(xt, yt) is the Jacobian matrix

for the system Eq.(4), calculated along an orbit. A given
orbit {xt, yt} from t = 0 to t = T −1 can be separated in
two subsets, according to the source of the xt variable,
either coupled or uncoupled to the drive, that we respec-
tively denote as A = {{xt, yt} : xt = s(xt−1, yt−1)} pos-
sessing pT elements, and B = {{xt, yt} : xt = f(xt−1)}
having (1 − p)T elements. We get

(

T−1
∏

t=0

J

)1/T

=











∏

t: xt∈A

sx

∏

t: xt∈B

f ′(xt) K

0

T−1
∏

t=0

g′(yt)











1/T

,

(5)
where sx = ∂s

∂x = (1 − ǫ)f ′(x), and K is a poly-
nomial whose terms contain products of sx, ǫ, and
g′(yt) to be evaluated along time. Then Lx =

[
∏

xt∈A sx

∏

xt∈B f ′(xt)]
1/T and Ly = [

∏T−1
t=0 g′(yt)]

1/T .
Thus we get

Λx = p ln |1−ǫ|+ lim
T→∞

1

T

[

ln
∏

xt∈A

|f ′(xt)| + ln
∏

xt∈B

|f ′(xt)|

]

(6)

Λy = lim
T→∞

1

T

T−1
∑

t=0

ln |g′(yt)| = λg , (7)
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FIG. 3: Region for generalized synchronized (GS) states
(〈σ〉 < 10−7, after discarding 104 iterates) for the system
of maps Eq. (1), with f(x) = 1.2 + |x|−0.5, N = 104, subject
to the intermittent drive g(yt) = 1 − 2y2

t , on the plane (p, ǫ).
This same region corresponds to generalized synchronization
(satisfying Λx < 0) for the single driven map Eq. (4) with
g(yt) = 1 − 2y2

t .

where λg is the Lyapunov exponent of the map g(yt).
Synchronization occurs if the Lyapunov exponent corre-
sponding to the driven map is negative [Rulkov et al.,
1995]; i.e., Λx < 0. For a given set of parameter values,
there is a definite value of the probability p at which the
exponent Λx changes its sign, from positive to negative,
signaling the onset of synchronization in the dynamics of
the two-dimensional system Eq. (4).

Figure 4 shows Λx and Λy as a function of p for the
driven map Eq. (4) for different drives g.
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FIG. 4: Lyapunov exponents Λx and Λy as functions of p for
the single driven map Eq. (4) with f(x) = 1.2+ |x|−0.5, calcu-
lated over 5 × 104 iterates after discarding 5 × 103 transients
for each value of p. (a) g(yt) = 1.2+|yt|

−0.5, ǫ = 0.6 (complete
synchronization). (b) g(yt) = 1 − 2y2

t , ǫ = 0.8 (generalized
synchronization).

When g = f , the condition Λx < 0 implies complete
synchronization, where xt = yt. In this case we get

Λy = λf ,
Λx = p ln |1 − ǫ| + λf ,

(8)

where λf is the Lyapunov exponent of the map f . Fig-
ure 2 shows the stability boundaries, given by Λx = 0, for
the completely synchronized states of the system Eq. (4)
on the space of parameters (p, ǫ) for different orbits of a
drive g(yt).
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On the other hand, if g 6= f , the condition Λx < 0 cor-
responds to generalized synchronization, characterized
by xt 6= yt. Figure 3 shows the stability boundaries,
given by Λx = 0, for the generalized synchronized states
of the system Eq. (4) on the space of parameters (p, ǫ) for
different drives g(yt). In both, Figs. 2 and 3, the curves
Λx = 0 coincide with the boundaries for stability of com-
plete and generalized synchronization, respectively, in the
extended system Eq. (1). Thus, the condition Λx < 0
for generalized or complete synchronization in the single
driven map Eq. (4) is equivalent to the condition for the
stability of the synchronized state xi

t = xt, ∀i, in the
intermittently driven system of maps Eq. (1).

The above results are a consequence of the auxiliary
system approach. Furthermore, the equivalence between
a single driven map and a system of driven similar maps
also shows that, under some circumstances, the collective
behavior of an extended system of interacting elements
can be inferred by considering the dynamics on a single
element at the local level. As an application of this idea,
we consider a partially driven system of maps defined as

xi
t+1 =

{

s(xi
t, yt), with probability p

f(xi
t), with probability (1 − p)

yt+1 = g(yt) .

(9)

The parameter p is the probability of interaction of a map
with the drive g at a time t. The driven elements are
randomly chosen with a probability p, so that not all the
maps in the system receive the same external influence at
all times. Thus, the average fraction of driven elements in
the system Eq. (9) at any given time is p. In comparison,
the forcing of the elements in the intermittently driven
system Eq. (1) is simultaneous and uniform; each map
receives the same influence from the drive g at any t
with probability p.

When system Eq. (9) gets synchronized, we have xi
t =

xt. However, the synchronized solution exists only if g =
f . Therefore, only complete synchronization xi

t = xt =
yt can occur in this system.

At the local level, each map in the partially driven
system Eq. (9) is subject, on the average, to an exter-
nal forcing g with probability p. Thus, the behavior of
system Eq. (9) can also be studied from the behavior of
the single, intermittently driven map Eq. (4). In partic-
ular, if the system of maps Eq. (9) driven with g = f
reaches a complete synchronized state for some values of
parameters, then for this same set of parameters the sin-
gle driven map Eq. (4) subject to the same drive should
eventually exhibit a synchronized state similar to that of
system Eq. (9). Thus, the condition Λx < 0 for com-
plete synchronization in the single driven map Eq. (4),
that implies stable synchronization in the intermittently
driven system Eq. (1), is also equivalent to the condi-
tion for the stability of the complete synchronized state
xi

t = xt = yt, ∀i, in the partially driven system Eq. (9).
To see this, when g = f we express the system Eq. (9) in

vector form as

xt+1 = Gtf(xt) (10)

where the (N + 1)-dimensional vectors xt and f(xt)
have components [xt]i = xi

t and [f(xt)]i = f(xi
t), re-

spectively, for i = 1, . . . , N , while [xt]N+1 = yt and
[f(xt)]N+1 = g(yt). The (N + 1) × (N + 1) matrix
Gt expresses the coupling between the N maps and the
drive at a time t. The matrix Gt at time t possesses pN
randomly chosen rows, each having its components Gi,j

(i, j = 1, 2, . . . , (N + 1)) equal to 0, except Gi,i = ǫ and
Gi,N+1 = ǫ. The remaining N − pN rows, and the row
(N +1), have their components Gi,j = 0, except Gi,i = 1.
Thus, at a time t, the matrix Gt has the form

Gt =



















(1 − ǫ) 0 · · · · · · ǫ

0 1 0 · · ·
...

... 0
. . . · · ·

...
...

... 0 (1 − ǫ) ǫ
0 · · · · · · 0 1



















. (11)

The long-time evolution of the vector state xt is given
by

xt+1 = G f(xt). (12)

where the matrix G is the geometric mean of the prod-
ucts of all possible configurations of Gt over a long time
T ,

G =

[

T−1
∏

t=0

Gt

]1/T

. (13)

We get

G =

















(1 − ǫ)pT 0 · · · · · · K

0 (1 − ǫ)pT 0 · · · K
... 0

. . . · · ·
...

...
... 0 (1 − ǫ)pT K

0 · · · · · · 0 1

















1/T

,

(14)
where K is a polynomial whose terms contain products
of (1 − ǫ) and ǫ.

The linear stability analysis [Waller & Kapral, 1984;
Kaneko, 1990] of the complete synchronized state f(xi

t) =
f(xt) yields

∣

∣αk eλf
∣

∣ < 1 , (15)

where αk (k = 0, 1 . . . , N) are the set of eigenvalues of
the matrix G, with α0 = 1 and αk = (ǫ − 1)p for k > 0,
having N -fold degeneracy. The eigenvector correspond-
ing to k = 0 is homogeneous. Thus perturbations of xt

along this eigenvector do not destroy the coherence, and
the stability condition associated with k = 0 is irrelevant
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for a synchronized state. The other eigenvectors corre-
sponding to k 6= 0 are not homogeneous. Thus, condition
Eq. (15) with k 6= 0 becomes

p ln |1 − ǫ| + λf < 0, (16)

which is the same condition for stability of complete syn-
chronized states in the single driven map, Eq. (8), when
g = f . Thus, the stability boundary Λx = 0 in Fig. 2
for the driven map with g = f coincides with both, the
boundary that separates the region where complete syn-
chronization occurs on the space of parameters (p, ǫ) for
the partially driven system Eq. (9), and the boundary
for complete synchronization in the intermittently driven
system Eq. (1). However, generalized synchronization
cannot occur in the former system.

10
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104

0.4 0.6 0.8 1

Ts

p

FIG. 5: Average time Ts to reach complete synchronization
as a function of the probability p for both, the intermittently
driven system Eq. (1) (bottom curve) and the partially driven
system Eq. (9) (top curve). For both systems, f = 1.2 −
|x|−0.5, ǫ = 0.7, N = 104, and g = f . The error bars on each
curve correspond to standard deviations resulting from 100
realizations of random initial conditions for each value of p.

Although complete synchronization of chaos in both
classes of driven systems, Eq. (1) and Eq. (9), can be
characterized from the knowledge of the dynamical re-
sponse of a single driven map, the transient behavior to
reach such a state is different in each case. Figure (5)
shows the average time Ts required to attain complete
synchronization as a function of p in both, a partially
driven system and an intermittently driven system of
maps. The times Ts are larger in the first case, i.e., a
spatially uniform forcing on a system is more efficient
than a non-uniform one for achieving complete synchro-
nization.

Complete synchronization in networks of coupled oscil-
lators subject to either a uniform drive g with a proba-
bility p, or to a drive g applied on a random fraction p of
the elements at all times, may also be equivalent. As an
illustration, consider a uniformly, intermittently driven

one-dimensional lattice,

∀i, x
i
t+1 =

8

>

>

<

>

>

:

(1 − ǫ − γ)f(xi
t) + γ

2

ˆ

f(xi+1

t ) + f(xi−1

t )
˜

+ ǫg(yt),
with probability p;
(1 − γ)f(xi

t) + γ

2

ˆ

f(xi+1

t ) + f(xi−1

t )
˜

,

with probability (1 − p);
(17)

where γ is the local coupling parameter. The analogy can
be established with a similar lattice subject to a drive
g(yt) acting on a randomly chosen fraction p of maps,

x
i
t+1 =

8

>

>

<

>

>

:

(1 − ǫ − γ)f(xi
t) + γ

2

ˆ

f(xi+1
t ) + f(xi−1

t )
˜

+ ǫg(yt),
with probability p;
(1 − γ)f(xi

t) + γ

2

ˆ

f(xi+1
t ) + f(xi−1

t )
˜

,

with probability (1 − p).
(18)

Periodic boundary conditions are assumed for both lat-
tices. Figure 6 shows σt as a function of time for both
systems, Eq. (17) and Eq. (18), for a given example.
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FIG. 6: σt vs. t for (a) the intermittently driven lattice
Eq. (17) and (b) the partially driven lattice Eq. (18). In
both cases, f(x) = 1.2 + |x|−0.5, ǫ = 0.8, γ = 0.2, p = 0.5,
N = 103, and the drive g = f is applied starting at t = 1000.
Random initial conditions are used.

In summary, we have shown that the synchronization
behavior of a system of chaotic maps subject to an exter-
nal forcing can be inferred from the behavior of a single
element in the system. The local dynamics can be seen
as a single driven map; when this drive-response system
reaches synchronization, the auxiliary system approach
implies that an ensemble of identical maps subject to
a similar drive should also synchronize. We have shown
that the regions of stable complete synchronization in pa-
rameter space of two systems of identical chaotic maps
subject to the same drive acting either intermittently in
time, or partially in space, coincide. At the local level,
the long-time dynamics of both systems can be character-
ized by a single chaotic map driven with a probability p.
In addition, we have shown that complete synchroniza-
tion in networks of interacting elements subject to either
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intermittent or partial drives can also be similar. This
result suggests that these systems possess an ergodicity
property.

For the intermittently driven system, the sharing of the
external influence by the elements takes place only a frac-
tion of the time. In the case of the partially driven sys-
tem, the external drive is shared only by a fraction of el-
ements at any time. Thus, neither the presence of a com-
mon influence for all times, or the simultaneous sharing
of the same influence by all the elements, seem essential
for reaching synchronization in systems of chaotic oscilla-
tors. What becomes crucial for achieving synchronization
in both systems is the sharing of some minimal, average
information by the elements over long times. Future ex-
tensions of this work should include the investigation of
some quantity, such as the transfer entropy [Schreiber,
2000], for measuring this minimal amount of information
required for both types of synchronization, and the con-
sideration of other forms of collective behaviors observed
in dynamical networks, besides synchronization.
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