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Generalized synchronization of chaos in autonomous systems
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We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in
driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situa-
tion where the chaotic state variables in an autonomous system can be synchronized to each other
but not to a coupling function defined from them. The form of the coupling function is not crucial;
it may not depend on all the state variables nor it needs to be active for all times for achieving
generalized synchronization. The procedure is based on the analogy between a response map subject
to an external drive acting with a probability p and an autonomous system of coupled maps where
a global interaction between the maps takes place with this same probability. It is shown that,
under some circumstances, the conditions for stability of generalized synchronized states are equi-
valent in both types of systems. Our results reveal the existence of similar minimal conditions for
the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal
systems.

PACS numbers: 05.45.-a, 05.45.Xt, 05.45.Ra

Generalized synchronization of chaos is a common phe-
nomenon occurring in unidirectionally coupled systems,
where a distinction can be made between a drive or for-
cing subsystem and another driven or response subsystem
[1]. It arises when a functional relation different from the
identity is established between the drive and the response
subsystems [2]. This phenomenon has been the subject
of many theoretical and numerical studies [3, 4, 5, 6, 7]
and has been observed experimentally [8, 9, 10, 11]. On
the other hand, there has been recent interest in the
investigation of chaotic synchronization and other col-
lective behaviors emerging in networks of mutually inte-
racting dynamical elements where no external influences
are present [12, 13]. In particular, the phenomenon of
complete synchronization, where all the state variables
converge to a single trajectory in phase space, has been
widely studied in these autonomous dynamical systems.
In this paper, we present a procedure that allows to ex-
tent the concept of generalized synchronization of chaos
found in driven systems to the context of autonomous
systems. We mean that, under some circumstances, the
chaotic state variables in an autonomous dynamical sys-
tem can be synchronized to each other but not to a cou-
pling function containing partial information from those
variables. This phenomenon can be seen as a form of
collective behavior arising in some specifically designed
dynamical networks. Our procedure is based on the re-
ported analogy between a single driven map and a system
of globally coupled maps [14]. This analogy provided an
explanation of dynamical clustering [13, 15] and of stabil-
ity of steady states in systems with delayed interactions
[16]. Here we search for minimal conditions for the oc-
currence of generalized synchronization of chaos in both,
driven and autonomous systems, by using models of cou-
pled maps.

We consider a map driven with a probability p,

xt+1 =

{

w(xt, yt), with probability p

f(xt), with probability (1 − p),

yt+1 = g(yt),

(1)

where f(xt) and g(yt) describe the dynamics of the driven
and the drive variables, respectively; and the coupling
relation between them is chosen to be

w(xt, yt) = (1 − ǫ)f(xt) + ǫg(yt) , (2)

where ǫ is the coupling strength. For the driven chaotic
dynamics we shall choose in most examples f(xt) =
b+ln |xt|, where b is a real parameter and xt ∈ (−∞,∞).
This logarithmic map exhibits robust chaos, with no pe-
riodic windows and no separated chaotic bands, on the
interval b ∈ [−1, 1] [17].

The linear stability condition for generalized synchro-
nization is determined by the Lyapunov exponents of
the two-dimensional system Eq. (1). These are de-
fined as Λx = limT→∞ lnLx and Λy = limT→∞ lnLy,
where Lx and Ly are the magnitude of the eigenvalues of

[
∏T−1

t=0 J(xt, yt)]
1/T , and J(xt, yt) is the Jacobian matrix

for the system Eq.(1), calculated along an orbit. A given
orbit {xt, yt} from t = 0 to t = T −1 can be separated in
two subsets, according to the source of the xt variable,
either coupled or uncoupled, that we respectively denote
as A = {{xt, yt} : xt = w(xt−1, yt−1)} possessing pT ele-
ments, and B = {{xt, yt} : xt = f(xt−1)} having (1−p)T
elements. We get
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where wx = ∂w
∂x = (1 − ǫ)f ′(x), and K is a poly-

nomial whose terms contain products of wx, ǫ, and
g′(yt) to be evaluated along time. Then Lx =

[
∏

xt∈A wx

∏

xt∈B f ′(xt)]
1/T and Ly = [

∏T−1
t=0 g′(yt)]

1/T .
Thus we get

Λx = p ln |1 − ǫ| + lim
T→∞

1

T

"

ln
Y

xt∈A

|f ′(xt)| + ln
Y

xt∈B

|f ′(xt)|

#

(4)

Λy = lim
T→∞

1

T

T−1
X

t=0

ln |g′(yt)| = λg , (5)

where λg is the Lyapunov exponent of the map g(yt).
Generalized synchronization occurs if the Lyapunov ex-
ponent corresponding to the driven map is negative [2];
i.e., Λx < 0.

Figure 1 shows the Lyapunov exponents of the driven
system Eq. (1) with g 6= f , when the probability p is
varied. The exponent Λy is constant and positive for
the chosen chaotic drive g. On the other hand, there
is a definite value of the p at which the exponent Λx

changes its sign, from positive to negative, signaling the
onset of generalized synchronization and the appearance
of a contracting direction in the dynamics of the two-
dimensional map Eq. (1).
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FIG. 1: Lyapunov exponents Λy and Λx for the driven system
Eq.(1) as a function of p, for g(yt) = 0.5 + ln |yt| and f(xt) =
−0.7 + ln |xt|, and ǫ = 0.7.

Figure 2 shows the orbits of the driven system Eq.(1)
for different values of the probability p. Generalized syn-
chronization in this two-dimensional map system is man-
ifested by the appearance of a strange attractor for values
of p above some threshold value.

When g = f , the condition Λx < 0 implies complete
synchronization, where xt = yt. In this case we get

Λx = p ln |1 − ǫ| + λf , (6)

where λf is the Lyapunov exponent of the map f . Fig-
ure 3 shows the stability boundaries, given by Λx = 0, for
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FIG. 2: Orbits of the driven map Eq.(1) for g(yt) = 0.5+ln |yt|
and f(xt) = −0.7 + ln |xt|, ǫ = 0.7. (a) p = 0.3 (unsynchro-
nized). (b) p = 0.9 (generalized synchronization); the insert
is a magnification of the marked square.

the completely synchronized states of the system Eq. (1)
on the space of parameters (p, ǫ) for different orbits of
a drive g(yt). When g = f complete synchronization
in a unstable periodic-m orbit of the map f , defined by
f (m)(xn) = xn and satisfying eλf =

∏m
n=1 |f

′(xn)| > 1,
where {x1, x2, . . . , xm} are the set of consecutive points
on this orbit, can also be achieved in the system Eq. (1),
as shown in Fig. 3.
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FIG. 3: Boundaries Λx = 0 (Eq. (6)) on the plane (p, ǫ)
for complete synchronization in the driven map Eq. (1) with
f(xt) = −0.7 + ln |xt|. Dashed line: g(yt) = {x1 =
−0.855762}; solid line: g(yt) = −0.7 + ln |yt| (this bound-
ary also corresponds to complete synchronization in the au-
tonomous system Eqs. (7) and (9)); dotted line: g(yt) =
{x1 = 0.18049, x2 = −2.41208}.

On the other hand, if g 6= f , the condition Λx < 0
corresponds to generalized synchronization, character-
ized by xt 6= yt. Consider, for example, the system
Eq. (1) subject to an intermittently applied, constant
drive g(y) = C, which reduces to a one-dimensional map
with a Lyapunov exponent Λx depending on the param-
eters C, ǫ, and p. The region where generalized synchro-
nization arises on the plane (C, ǫ) for a fixed value of p
is shown in Fig. 4.
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FIG. 4: Region for generalized synchronized states xt 6= C

(satisfying Λx < 0) for the system Eq. (1) subject to a con-
stant drive g(yt) = C, on the plane (C, ǫ). Horizontal lines
indicate the values C = 2, C = 0, and C = {x1 = −0.855762}.
The synchronization region for C ≥ 0 also comprises the gen-
eralized synchronized states (〈σ〉 < 10−7) of the autonomous
system Eq. (7) with N = 104, having a coupling function
given by Eq. (13). In both cases, f(x) = −0.7 + ln |x| and
p = 0.5.

The dynamics of the single driven map Eq. (1) can be
compared with the dynamics of an autonomous system
of maps that share a global interaction with a probability
p, ∀i,

xi
t+1 =

{

(1 − ǫ)f(xi
t) + ǫHt(x

j
t : j ∈ Qt), with prob. p,

f(xi
t), with prob. (1 − p),

(7)
where xi

t (i = 1, 2, . . . , N) gives the state of the ith map
at discrete time t, ǫ is the strength of the coupling to the
global interaction function H ; and Qt is a subset having
q ≤ N elements of the system that may be chosen at ran-
dom at each time t. Each map receives the same informa-
tion from the coupling function H at any t with probabil-
ity p. When this autonomous system gets synchronized
at some values of parameters, we have xi

t = xt. Thus for
this same set of parameters, the single driven map subject
to a forcing that satisfies g(yt) = H(xj

t = xt : j ∈ Qt) for
long times should exhibit a synchronized state similar to
that of the associated autonomous system Eq. (7). Thus,
besides complete synchronization where xi

t = xt = H ,
other synchronized states, characterized by xi

t = xt 6= H
and which we call generalized synchronization, should
also occur in the autonomous system Eq. (7) for appro-
priate values of parameters.

A synchronized state can be characterized by the
asymptotic time-average 〈σ〉 (after discarding a number
of transients) of the instantaneous standard deviations

σt of the distribution of map variables xi
t, defined as

σt =

[

1

N

N
∑

i=1

(

xi
t − 〈xt〉

)2

]1/2

, (8)

where 〈xt〉 is the instantaneous mean of the values xi
t, ∀i.

Stable synchronization corresponds to 〈σ〉 = 0. Here we
use the numerical criterion 〈σ〉 < 10−7.

As an example of complete synchronization, consider
a partial mean field coupling function

H =
1

q

q
∑

j=1

f(xj
t ). (9)

In this case the autonomous system Eq. (7) can be
expressed in vector form as

xt+1 =







(

(1 − ǫ)I +
ǫ

q
Gt

)

f(xt), with probability p,

I f(xt), with probability (1 − p),

(10)
where the N -dimensional vectors xt and f(xt) have com-
ponents [xt]i = xi

t and [f(xt)]i = f(xi
t), respectively,

I is the N × N identity matrix, and Gt is an N × N
matrix that at each time t possesses q randomly chosen
columns that have all their components equal to 1 while
the remaining N − q columns have all their components
equal to 0. The case q = N and p = 1 corresponds
to the usual mean field global coupling [18]. The linear
stability analysis [19] of the complete synchronized state
f(xi

t) = f(xt) = H yields

∣

∣

∣

∣

[

(1 − ǫ) +
ǫ

q
αk

]p

eλf

∣

∣

∣

∣

< 1 , (11)

where αk = δ0kq (k = 0, 1 . . . , N−1) are the set of eigen-
values of the matrix Gt for any t, with the zero eigenvalue
having (N − 1)-fold degeneracy. The eigenvector corre-
sponding to k = 0 is homogeneous. Thus only perturba-
tions of xt along the other eigenvectors may destroy the
coherence. Thus, condition Eq. (11) with k 6= 0 becomes

p ln |1 − ǫ| + λf < 0, (12)

which is the same condition for stability of complete syn-
chronized states in the driven map, Eq. (6), when g = f .
Thus the boundary that separates the region where com-
plete synchronization occurs on the space of parameters
(p, ǫ) for the autonomous system Eq. (7), with H given
by Eq. (9) for any value of q, coincides with the sta-
bility boundary Λx = 0 in Fig. 3 for the driven system
with g = f . However, in contrast with the driven case,
the unstable periodic orbits of the local map f cannot
be synchronized in the autonomous system because they
correspond to unstable synchronized states in this sys-
tem.
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FIG. 5: Left vertical axis: Bifurcation diagrams of St(N)
(black dots) and H (grey dots) vs. ǫ for the autonomous sys-
tem given by Eqs. (7) and (13) with f(xi

t) = −0.7 + ln |xi
t|.

Right vertical axis: 〈σ〉 vs. ǫ (continuous line). Fixed param-
eters: p = 0.5, N = 104.

For other functional forms of the coupling function H
it is possible to find generalized synchronized states in
the autonomous system Eq. (7). For example, consider
the coupling function

H =

∑q
j=1 f(xj

t )
∑r

j=1 f(xj
t )

, (13)

where q < N , r < N , and define the instantaneous mean
field of the system as

St(N) =
1

N

N
∑

j=1

f(xj
t ) . (14)

Figure (5) shows the bifurcation diagram of St(N) as
well as 〈σ〉 as functions of the coupling parameter ǫ for
the autonomous system with the coupling function H
given by Eq (13). The mean field St(N) is chaotic for all
values of ǫ. For ǫ ≥ 0.54, we obtain 〈σ〉 = 0, indicating
that the system is synchronized in a chaotic state for that
range of the coupling parameter. Figure (5) also shows
the bifurcation diagram of the function H with values of
q and r chosen such that q/r = 2. Note that H = 2
on the range where synchronization occurs, otherwise it
is chaotic. This happens independently of the specific
values of q and r, as long as q/r = 2. Thus, we have
a situation where dynamical elements in an autonomous
system converge to a chaotic synchronized state xi

t = xt,
while a coupling function that contains partial informa-
tion about the system reaches a value different from
that state, i.e. H 6= xt. This is the analogous to the
phenomenon of generalized synchronization of chaos ob-
served in a driven system Eq. (1) with constant drive
g = C = 2, as illustrated in Fig. 4. Furthermore, for all
given values of q and r the autonomous system with H

described by Eq (13) exhibits generalized synchronization
that yields H = q/r on the same region of the plane (C, ǫ)
in Fig. (4) where generalized synchronization is observed
for the map driven with constant g = C = q/r > 0.

The equivalence between an external drive and a global
coupling function can be used to predict the emergence
of generalized synchronization in either system from the
occurrence of this phenomenon in the other. As an illus-
tration, consider a parametrically, intermittently driven
map Eq. (1) with g = 0. Figure 6 shows the region
where Λx < 0 on the plane (p, ǫ) for this system. The
analogy external drive-global coupling suggests that an
autonomous spatiotemporal system Eq. (7) having a cou-
pling function that reached a value H = 0 at synchro-
nization, should possess the same region of stability for
this state on the plane (p, ǫ). Consider, for example, the
coupling function

H =





1

q

q
∑

j∈Qt

(

f(xj
t ) − St(q)

)2





1/2

, (15)

where St(q) is the partial mean field of q maps randomly
chosen at each time t. This autonomous system reaches
generalized synchronization, i.e., a chaotic synchronized
state with xi

t 6= H = 0 for any value of q, on the same
region of the plane (p, ǫ) as in the driven map Eq. (1)
shown in Fig. 6.
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FIG. 6: Region of generalized synchronization on the plane
(p, ǫ) for: (i) the single driven map Eq. (1) with g = 0 (Λx <

0); and (ii) the autonomous system Eq. (7) with N = 104 and
H given by Eq. (15) for any value of q (〈σ〉 < 10−7). In both
cases, b = −0.7.

Note that H does not need to be a function of all the
maps nor it must be active for all times; what matters for
synchronization is that all elements in the autonomous
system share the same minimal information at any time.
Thus, the nature of the common input (external or en-
dogenous) being received by the local units is irrelevant
for synchronization in either driven or autonomous sys-
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tems. In both scenarios, each unit evolves as a driven
map at the local level.

Generalized synchronization may also arise in an au-
tonomous network of coupled oscillators that, in addi-
tion, share a global coupling function H with probability
p. As an illustration, consider a one-dimensional lattice,

xi
t+1 =















(1 − ǫ − γ)f(xi
t) + γ

2

[

f(xi+1
t ) + f(xi−1

t )
]

+

ǫH(xj
t : j ∈ Qt), with prob. p;

(1 − γ)f(xi
t) + γ

2

[

f(xi+1
t ) + f(xi−1

t )
]

,
with probability (1 − p);

(16)
where γ is the local coupling parameter. The analogy
can be established with a lattice of similar coupled maps
subject to a uniform drive g(yt) with probability p,

xi
t+1 =















(1 − ǫ − γ)f(xi
t) + γ

2

[

f(xi+1
t ) + f(xi−1

t )
]

+
ǫg(yt), with probability p;

(1 − γ)f(xi
t) + γ

2

[

f(xi+1
t ) + f(xi−1

t )
]

,
with probability (1 − p).

(17)
Periodic boundary conditions are assumed for both sys-
tems. Figure 7 shows, for a given example, that the re-
gion of generalized synchronization is the same for both
systems on the plane (ǫ, γ), when g(yt) = H .
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FIG. 7: Region for generalized synchronization on the plane
(ǫ, γ) for both, the autonomous network Eq. (16) with H given
by Eq. (13) with q = 200, r = 500; and the driven network
Eq. (17) with constant g = 0.4. For both systems, f(x) =
4x(1 − x), N = 103, p = 0.5.

In summary, based on the analogy between a single
driven map and a globally coupled system of maps, we
have extended the concept of generalized synchroniza-
tion of chaos to the context of autonomous dynamical
systems. It means that there can exist a coupling func-
tion H containing some information about the elements
in the autonomous system that reaches a state different
from the state of those elements when they are chaotically
synchronized. The functional form of H is not crucial for
achieving generalized synchronization; what matters is

the sharing of the same information about the system by
its elements. By comparing a single map driven with a
probability p and an autonomous system of maps shar-
ing a global coupling with this same probability, we have
shown that the minimal conditions for stability of gener-
alized synchronized states are equivalent in both types of
systems. The analogy external drive-global coupling al-
lows to design a spatiotemporal autonomous system ex-
hibiting generalized synchronization of chaos from the
knowledge of the occurrence of this phenomenon in an
associated single driven map. Extensions of this work
include the possibility of designing global coupling func-
tions in autonomous systems to achieve specific behaviors
or patterns as self-organizing phenomena.

This work was supported by grant C-1579-08-05-B
from Consejo de Desarrollo Cient́ıfico, Humańıstico y
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