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Abstract

Using a set of heterogeneous competing systems with intra-system
cooperation and inter-system unfair competition, we show how the co-
evolution of the system parameters (degree of cooperation and unfair
competition) depends on the external supply of resources. This kind
of interaction is found in social, economic, ecological and biochemi-
cal systems; as an illustration we consider the competition between
drug-selling gangs. The model consists of a set of units (individuals,
machines or enzymes) grouped in a number of systems (organizations,
factories or glycosomes), each one composed by a fixed number of units
that can be organized in three configurations: isolated (monomers),
cooperating in couples (dimers), and cooperating in groups of four
(tetramers). The units working in cooperating configurations increase
their ability to obtain the resources (customers, raw material or sub-
strates). The supply of resources can be polluted by the systems
through inhibitors. When an unit absorbs an inhibitor, its function
is blocked during a period of time. When the blocked unit belongs to
dimers or tetramers, all units in the group are also inhibited to acquire
the resource. Two parameters characterize each system: the fraction
of monomers and the range of the average production in which the
system is allowed to produce inhibitors. By using a genetic algorithm,
we observe that the evolution of the parameters of the systems main-
tains its long term average values for low and high supply rates, but
tends to display global evolutive transitions when the supply of raw
material lies between abundance and scarcity.
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1 Introduction

There are many situations in which the global performance of a set of com-
peting systems, measured in some way, is below its maximum possible value
due to the “unfair” competition among the systems. Generally, in complex
systems the competing components use different strategies that may con-
sume part of the available resources in order to reduce the performance of
the others. In these situations there is a global cost but the collateral ef-
fect is to favor the apparition of new strategies that tend to increase the
diversity and complexity in these systems. This is the case in some social
and economic systems [1, 2, 3, 4, 5] and in ecological and biochemical sys-
tems [6, 7, 8, 9, 10]. For example, Axelrod [1, 2] considers an evolutionary
approach to social norms based on a n-person Prisoner’s dilemma. In this
norms game the players can defect (getting a payoff and hurting each of the
other players) but can be punished if seen by other player. The evolution of
the player’s strategy (the boldness and the vengefulness) is driven by the se-
lection of the strategies giving the best scores; however, the maximum global
score (no one defects) is rarely observed.

There are many situations in which there is an interplay between risk and
profit. In some cases, the risk and the profit depend on the degree of organi-
zation within a competing system: a greater degree of organization usually
results in a greater profit but on the other hand it also may increase potential
losses in case of unfair competence. Consider for instance the various drug-
selling gangs that coexist in the poorest neighborhoods of a large city [11, 12].
Each gang controls a territory that can expand or contract, but let us assume
that it mantains its size (e.g. 10x10 blocks). The gangs compete to sell drugs
to a limited number of customers (the resource). The customers prefer to buy
in the safest, easiest and quickest possible way and the gangs try to sell as
much as they can by using strategies to attract the largest possible fraction
of the consumers in the city. The model presented here considers two types
of strategies: intra-system cooperation and inter-system aggression. In the
gangs example, the degree of intra-gang cooperation can be associated to the
various ways in which the gang members are distributed in their territory.
The dealers can aggregate in a few intersections or can distribute themselves
in as many intersections as dealers in the gang. Busy corners (as well as
shopping centers) offer an environment in which customers can buy drugs in
an easy and quick way; besides, the presence of other customers gives the
impression of a relatively safe place. Inter-system aggressions can be asso-
ciated with the violence between gangs. In our model aggression has a cost
for the aggressor and causes more damage to units working in cooperation
than to isolated units. The shooting of a rival drug-dealer immediately stops
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drug sales at the crime scene. During the next days or weeks, the police
is patrolling the area, scaring away habitual customers who choose to buy
drugs in other safer places. If the shooting occurs in a busy corner, where
several drug-dealers are simultaneously dealing with customers, income losses
per shooting are larger compared to the one-dealer one-corner case. On the
other hand, the attacking gang pays a cost in several ways: money to buy
guns and/or hire mercenary aggressors, demand of dealers for higher wages
because of the added risk, etc.

Here we consider a stylized model to analyze the coevolution of the strate-
gies of systems competing for limited resources [13]; specifically, we study the
coevolution of intra-system cooperation and inter-system aggression. Our
model consist of Ng × Ne identical units organized in Ng systems with Ne

elements per system. This type of systems is found in cells, where enzymes
are grouped within specialized organelles; similarly, in the industrial sector,
machines are grouped in factories, or, as in the gang example, drug dealers
are grouped in gangs. The systems compete to acquire the resources (sub-
strates, raw material or customers) supplied to the system at a rate Ṡ and at
the same time are allowed to produce inhibitors that reduce the performance
of others. The cooperation among associated units increases the efficiency to
bind substrate when they are arranged in oligomers, as in the case of enzymes
[14]. Inhibitors reduce the efficiency by blocking the unit during a period of
time as in the case of the occupation by an inhibitor of the active site where a
substrate is bound to the enzyme [14]. The performance (i.e. the production
rate) of a system depends on its comparative ability to acquire the resources,
which in turn depends on the configuration of the units in the system. In
absence of inhibitors, the production rate is greater in systems with cooper-
ating units than in systems with units working in isolation. However, when
inhibitors are present, the number of units blocked per inhibitor depends on
the working configuration of the units.

In real systems the strategies used by its components to survive and
reproduce are in general very sophisticated and are the result of evolution.
Models like the one presented below help to understand how the ambient
conditions and the interaction between the systems drive the evolution of
the model parameters; in our case, the fraction of units working in isolation
and the conditions to release inhibitors.

The model is presented in Sec. 2. In Sec. 3 we consider a set of com-
peting systems including four types of systems with different cooperating
configurations; two cases are considered: when the inhibitors are externally
supplied and when the inhibitors are produced by the systems. In Sec. 4
a genetic algorithm is used to allow the evolution of the system strategies.
Conclusions are given in Sec. 5.
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2 The model

Consider a set of Ng systems, each one possesing the same number Ne of
units. The Ng ×Ne units compete to acquire the available resources that are

supplied at a rate Ṡ. The state of each unit is characterized by an integer
phase variable φi,j(t) where 1 ≤ i ≤ Ng indicates the system, 1 ≤ j ≤ Ne

enumerates the units in the system, and t is a discrete time counter. The
phase of unit (i, j) evolves in a similar way as the phase of the stochastic
automata originally proposed by Mikhailov and Hess [16, 17, 18], but allowing
for two additional processes: (i) the unit can bind either to a substrate or to
an inhibitor and (ii) units can work in cooperation with one or more units,
thus modifying their ability to bind to a substrate or to an inhibitor. The
idle state corresponds to the phase φ = 0, where the unit is ready to bind
a substrate or an inhibitor. When the unit acquires a substrate the phase
changes to φ = 1; afterwards the phase value is increased by one unit in
each time step until the unit reaches the maximum phase value φ = τ ; once
this happens the unit returns to its original idle state φ = 0. A product is
released at a fixed phase 1 < τp < τ . When the unit acquires an inhibitor
the phase changes from φ = 0 to the negative value φ = −τI ; afterwards the
phase value is increased by one unit in each time step until the unit reaches
its idle state φ = 0. The algorithm to iterate the phase of unit (i, j) is

φi,j(t + 1) =



























φi,j(t) + 1 if φi,j(t) 6= 0,
0 if φi,j(t) = τ

1 if φi,j(t) = 0 with probability pi,j,

−τI if φi,j(t) = 0 with probability qi,j,

0 if φi,j(t) = 0 with probability 1 − p − q.

(1)

The probabilities p and q are given by

pi,j = p0NS/ακi,j and qi,j = p0NI/α
κi,j . (2)

During a single iteration t the number of substrates NS and inhibitors
NI changes as they are bound by idle units. In Eq. (2) the parameter p0

represents the probability that an isolated idle unit binds a substrate when
only one substrate is available to be bound. The parameter α > 0 controls the
cooperativity and the exponent κ is the number of busy units that cooperate
with unit j in system i. If an unit is in its inhibited phase (−τI ≤ φ ≤ 0)
the binding probabilities are p = q = 0 for the idle units that cooperate with
the inhibited unit. When all the units in a cooperative arrangement are in
their idle state, κ = 0 and therefore there is no cooperation; that is, the
probability to bind a substrate is the same as if the units were working in
isolation. When κ units in a cooperative structure are busy (1 ≤ φ ≤ τ) the
probabilities p and q of the idle units are increased (if α < 1) or decreased
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(if α > 1) by a factor α−κ relative to the isolated case (κ = 0 or α = 1).
When a unit binds an inhibitor, it remains inoperative during τI iterations.
If a unit is inhibited, the other idle units in the cooperative arrangement are
also inhibited, however the ones that were processing a substrate continue
normally its way toward the idle state. In the following we adopt α < 1.

The configuration of cooperative units in a system remains fixed during
the simulation; that is, if the units j and j + 1 of system i are set as a
cooperative arrangement these two units remain in cooperation during the
complete simulation of one generation. For system i the configuration is
characterized by the three parameters Mi, Di, and Ti giving, respectively, the
number of units working in isolation (Monomers), the number of cooperating
arrangements of two units (Dimers), and the number of arrangements of four
units (Tetramers); all possible configurations satisfy Mi + 2Di + 4Ti = Ne.

At the beginning of a given iteration t the number of substrates in the
system is NS,begin(t) = NS,end(t − 1) + Ṡ, where NS,end(t − 1) is the number
of substrates that remained unbound in the previous iteration and Ṡ is the
number of substrates added at the beginning of iteration t. During iteration
t, the following procedure is executed: (a) the busy and the inhibited units
increase their phase in one unit. (b) an unit (i, j) is selected at random
among those in their idle state provided it is not associated to a inhibited
one; (c) the selected unit starts its processing cycle with probability pi,j, is
inhibited with probability qi,j , or remains idle with probability 1 − p − q. If
the unit starts its processing cycle the number of substrates in the system
NS decreases by one unit. If an inhibitor is bound, the total number NI

decreases in one unit. If the unit (i, j) does not leave the idle state, it is not
selected again during the present iteration. Steps (b) and (c) are repeated
until NS + NI = 0, or until all the units that were idle at the beginning of
the iteration t are selected.

The number of products released in a given iteration t by the Ne units
in system i is denoted as Ṗi(t) and the total production as Ṗ =

∑Ng

1 Ṗi.
The mean production rate per unit and per duty cycle in system i is de-
noted as υi = τṖi/Ne and the corresponding rate for all systems is υ =

(1/Ng)
∑Ng

1 υi = τṖ /NeNg. Since the maximum production rate is Ṗ =
NeNg/τ , then 0 ≤ υ ≤ 1. In absence of inhibitors, the maximum production
is approached when the binding probability is p ≫ 1/τ . If NeNg > τ Ṡ then,
NS,end ∼ 0, the fraction of units in their idle state is ∼ 1 − τ Ṡ/(NeNg), and
in average Ṗ = Ṡ. However, if the configuration of cooperating arrange-
ments in the Ng systems is inhomogeneous, then the production rate Ṗi is
also inhomogeneous.

The inhibitors can be introduced by an external source at a rate İext(t)
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or can be released into the environment by some systems at a rate İi(t). In
Sec. 3 and 4 we describe the conditions a system must fulfill to release an
inhibitor.

3 Inhomogeneous configurations

Consider a set of Ng = 20 systems, each one consisting on Ne = 120 units
arranged in different cooperative configurations: Mi = Ne for 1 ≤ i ≤ 5;
Di = Ne/2 for 6 ≤ i ≤ 10; Ti = Ne/4 for 11 ≤ i ≤ 15; and Mi = 40, Di = 20,
and Ti = 10 for 16 ≤ i ≤ 20. To quantify the performance of the ith system
we evaluate the average production rate 〈υi〉 per unit and per duty cycle τ in
system i. Let us label these four types of systems as types M, D, T and MDT
and their corresponding production rates as 〈υ〉M , 〈υ〉D, 〈υ〉T and 〈υ〉MDT .

3.1 External supply of inhibitors

First we consider the case when the system is supplied with a constant rate Ṡ
of substrates and analyze the dependence of 〈υ〉M , 〈υ〉D, 〈υ〉T and 〈υ〉MDT on
the external supply of inhibitors İext. When Ṡ = 1

2
NeNg/τ there are enough

substrates to maintain half of the units busy; this corresponds to a production
rate 〈υ〉 = 1/2. The average number of free substrates NS,end depends on p0

and on the cooperative arrangements in the system. If p0 = 1/τ and NS = 1,
an isolated unit remains in average half of the time in its idle state. If p0 is
reduced, NS increases in the same proportion in order to maintain the units
working at half velocity. If not all the units work in isolation, the units in
cooperative arrangements will be busier than the isolated ones (for α < 1).
Therefore, in absence of inhibitors one expects 〈υ〉T > 〈υ〉D > 〈υ〉M , but
these relations change depending on the supply rate of inhibitors İ and on
the blocking time τI . The results in Fig. 1 correspond to the case when Ṡ =
1

2
NeNg/τ . As expected, as İext increases, the performance of the T-systems

decreases whereas for the M-systems increases. However, for İext ≥ 1.2 even
the performance of the M-systems decreases because more than half of the
units are blocked (i.e. τI İext nc ≥

1

2
NgNe, where nc ≃ 2 is the mean number

of units in cooperating arrangements). Note that the performance of the
MDT systems remains almost constant for İext < 1.2.

In order to examine the effect of a non-stationary supply of inhibitors,
Fig. 2 shows the average production rates 〈υ〉M , 〈υ〉D, 〈υ〉T and 〈υ〉MDT

as functions of the unpolluted period τpol. The supply is İext = 0 during
τpol − 1 iterations and in the next iteration the supply is İext = τpol; that is,
the average supply is < İext >= 1. In order to reduce synchronization effects
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the inhibition time was randomized 10% around its mean value τI = 5τ .
Note that as τpol increases the average production rates tends to the values
corresponding to İext = 0. When a large number of inhibitors are added in
a single iteration (τpol ≫ 1) many idle units in all cooperating arrangements
are blocked, and therefore all types of systems reduce their performances
during τI iterations.

3.2 Internal production of inhibitors

Consider the case in which inhibitors are produced under certain conditions
and at a given cost by the systems. We assume that at a given time an
inhibitor is released into the environment by system i if the following con-
ditions are fulfilled: (i) at least one of the units in system i has released a
product during the present iteration t; (ii) there are no free inhibitors; and
(iii) υcri > υi(t) > υcri/2, where υi is the system production averaged dur-
ing the previous τave iterations. The cost of producing an inhibitor is one
product. During a given iteration a given system may release more than one
inhibitor, but in general, conditions (i) and (ii) limit the release of inhibitors
to at most to one per iteration. This corresponds to low intensity conflicts
in the drug-gang example.

Fig. 3 shows the average production rates 〈υi〉 as function of υcri for
20 systems competing to acquire the substrates supplied at a constant rate
Ṡ = 1

2
NeNg/τ . Half of the systems (black lines) have their units (Ne = 120)

working in isolation (M-systems) and the other half (grey lines) have their
units working in cooperative arrangements of four units (T-systems). The
curve labelled υtot corresponds to all-systems average production per unit
and the curve labelled σ(υtot) gives its standard deviation. In the region in
between the diagonal dashed lines the condition (iii) is fullfilled. The Roman
numbers label the 5 different regimes observed in Fig. 3. In regime (I)
none of the system production falls in the range [υcri/2, υcri] and therefore
there is no inhibitor production; the cooperation in T-systems results in
a better performace than in M-systems. In regime (II) a few M-systems
releasing inhibitors (in fact, only one in Fig. 3) are able to substantially
reduce the production of T-systems and to increase the production of the
remaining non polluting M-systems; however, T-systems perform better than
M-systems. Note that the system is self-regulated to mantain the production
of the polluting system k close to υk = υcri/2. In regime (III) all T-systems
release inhibitors. The performance of T-systems is reduced because of the
cost of producing inhibitors and the blocking of their cooperating units. In
this regime the M-systems perform the best, but the system production υsys

is reduced by about 10%. In regime (IV) all M-systems release inhibitors
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and their performance is higher than T-systems; the disadvantage associated
to the cost of releasing inhibitors is over-compensated by the fact that an
inhibitor is able to block four units in the T-systems. As in regime (III),
the system production υsys is reduced by about 10%. In regime (V) the
T-systems sporadically release inhibitors in such a way that their averaged
production rates 〈υi〉 remains close but below υcri/2 (note that during the
simulation υi fluctuates around 〈υi〉 and sporadically υcri > υi(t) > υcri/2).

4 Evolution of system parameters

The behavior of the system depends on the arrangement of the units in each
system and on the particular conditions at which each system releases in-
hibitors into the system. The results in Fig. 3 show that small changes
in the system parameters can drastically change the distribution of perfor-
mances. In Fig. 3 we considered that the conditions to release inhibitors
were the same for all systems and that there were only two types of systems.
Now, we allow heterogeneity in both parameters, that is, systems are char-
acterized by the parameters (f i

M ,υi
cri), where f i

M is the fraction of the units
working in isolation in system i (the rest works in cooperative arrangements
of four units), and υi

cri is the value of υi below which system i may release
inhibitors. Note that in Fig. 3 we used the condition υcri > υi(t) > υcri/2
for the release of inhibitors, but now we use υi(t) < υcri. For a given set of
system parameters (f i

M ,υi
cri) there is a distribution of the performances 〈υi〉

in a simulation. A change of the parameters fM or υcri in one of the systems
generally results in a redistribution of the performances 〈υi〉 and in a change
of the all-systems performance υtot.

A genetic algorithm is implemented to analyze the evolution of the system
parameters (f i

M ,υi
cri) with 0 ≤ f i

M ≤ 1 and 0 ≤ υi
cri ≤ 1. The chromosome

of each system is a eight digit binary number; the first four digits give the
16 possible values of the momomer fraction f i

M (= 0, 1/15, 2/15, . . .15/15)
and the last four digits give the critical value below which the system may
release inhibitors. For the first generation the system parameters are chosen
at random. The system parameter Ng, Ne, τ , τI , τave, and α and the supply
of substrates Ṡ remain fixed for all generations. Each generation consists of
tsim iterations of the model. At the end of a generation simulation the system
parameters for the next generation (offspring) are set by the following pro-
cedure: (i) the performances 〈υi〉 of the Ng systems are ranked in decreasing
order. (ii) those systems whose performances are more than one standard
deviation above < υtot > have two offspring and the rest (in decreasing order
of performance) have one offspring until the population size Ng is reached.
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(iii) Crossover between a random pair of offspring chromosomes occurs with
a probability pcross, and offspring mutate with a probability pmutate by chang-
ing one of their chromosome digits. The system with the best performance
is reproduced always without any change.

Figure 4 shows the results for three different values of the substrate supply
rate (Ṡ = 1/3, 1/2 and 2/3 of the full occupation value NeNg/τ). In each
case the evolution for 1500 generations is shown. The tick continuous curve
shows the evolution of the mean monomer fraction fM =

∑

f i
M/Ng of the

population, the dotted curve with large fluctuations shows the monomer
fraction of the system with performance ranked at half way (fM)med, the dots
indicate the monomer fraction of the systems that have released inhibitors
during the simulation of a generation, and the almost horizontal tick curve
gives the all-systems average production υtot. As Ṡ increases (from top to
bottom panel in Fig. 4) the average monomer fraction over generations fM

decreases, the fluctuations of the monomer fraction of the half ranked system
(fM)med decreases, and the number of systems releasing inhibitors decreases.
Note that for Ṡ = 2/3 (bottom panel) fM is small, (fM)med ∼ 0 for the
majority of generations, and there are few systems releasing inhibitors in
each generation.

To estimate the general trends as Ṡ increases, we performed 5 simulations
of 1500 generations for 24 different values of Ṡ (i.e. Ṡ = 1, 2, ..., 24); the first
100 generation are discarded. Figure 5 shows the average monomer fraction
in the five simulations. The continuous curve with error bars corresponds to
the average fM of the mean monomer fraction fM of the population for the
1400× 5 generations; the error bars correspond to one standard deviation of
the mean monomer fraction fM . The dashed curve (fM,top5 vs Ṡ) corresponds
to the same average but taking into account only the five systems with best
performances in each generation; the dotted curve (fM,bot5 vs Ṡ) corresponds
to the average for the five systems with the worst performances in each
generation. Note that as Ṡ increases fM first increases reaching a maximum
around Ṡ = 6 and then decreases. Around the maximum fM,top5 > fM,bot5,

but the contrary occurs for low and high values of Ṡ. That is, for high and
low values of Ṡ the systems with high monomer fraction tend to have less
offspring than systems with low monomer fraction. For very low values of
Ṡ there are many idle units so that inhibitors are not able to reduce the
already low system performance because the number of inhibitors released
is not enough to block a significant fraction of tetramers. Then, tetrameric
configurations are the best strategy to compete to bind the few available
substrates.

Figure 5 shows the average 〈υcri〉 of υcri =
∑

υi
cri/Ng in the 5 × 1400
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generations simulated for each of the 24 supply values. The dashed curve
(〈υcri,top5〉) and the dotted curve (〈υcri,bot5〉) give respectively the correspond-
ing averages for the five systems with best and worst performances. The long
dashed diagonal line indicates the average production per cycle per system.
As Ṡ increases the number of systems that reach the condition υi < υi

cri

decrease; so, for high values of Ṡ, tetrameric configurations perform better.
Figure 6 shows the average 〈υcri〉 of υcri =

∑

υi
cri/Ng in the 5 × 1400

generations simulated for each of the 24 supply values. The dashed curve
(〈υcri,top5〉) and the dotted curve (〈υcri,bot5〉) give respectively the correspond-
ing averages for the five systems with best and worst performances. The long
dashed diagonal line indicates the average production per cycle per system.
As Ṡ increases, the number of systems that reach the condition υi < υi

cri

decrease; so, for high values of Ṡ, tetrameric configurations perform better.
Note that the largest values of the dispersion of fM occurs around Ṡ = 12;

as shown in the middle panel of Fig. 4. This high dispersion results from the
fact that the system has two quasistable states: one of high monomeric frac-
tion and inhibitor production, and other of low monomeric fraction and low
inhibitor production. In the drug-selling gangs example, this situation corre-
sponds to extended periods of relative calm, followed by periods of frequent
aggressions.

The results shown correspond to a particular choice of model parameters,
rules to generate offspring, cooperativity α, conditions to release inhibitors,
etc. However, these results show that the interplay between cooperative con-
figurations and the possibility to decrease the production of others by the
release of inhibitors result in a rich variety of behaviors. In particular, the
model shows that this kind of systems tends to display global evolutive tran-
sition when the supply of resources lies in between abundance and scarcity.

5 Summary and Conclusions

We have proposed a model to study the combined effect of competition,
cooperation and aggression. The model consists of a set of systems, each one
having a number of units that can work with various degrees of cooperation.
The systems compete to acquire raw material and can pollute the system
with inhibitors.

We first considered a system with four types of systems: M, D, T and
MDT-systems, where M, D, and T refer to units working as Monomers,
Dimers and Tetramers. We have analyzed the system production of these
four types of coexisting systems as a function of the rate at which inhibitors
are supplied. If the supply rate of inhibitors is stationary, the T-systems
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dominate the consumption of the available resources for low rates whereas at
high rates the M-systems dominate the consumption. For a non-stationary
supply of inhibitors the performance of the various types of systems depends
on the precise time dependence of the supply rate. We have shown results
for the case when the supply of inhibitors occurs sporadically but the time
average rate remain constant. We have also considered the case in which the
systems can release inhibitors into the environment under prefixed conditions
and at a given cost. As shown in Fig. 3, when systems are allowed to produce
inhibitors, distinct regimes occur.

Finally, we have allowed for the evolution of the systems parameters and
have found that the interplay between cooperative configurations and the
possibility to decrease the production of others by the release of inhibitors
result in a rich variety of behaviors. In particular, when the supply of re-
sources lies in between abundance and scarcity, the model displays periods
characterized by low degrees of inter-system unfair competence and high de-
grees of intra-system cooperation followed by periods characterized by high
unfair competence and low cooperation. In the competing gangs example,
this corresponds to extended periods of relative calm, followed by periods of
frequent aggressions.

In the simulations shown here the supply of resources and the number
and size of systems are held constant for all generations. However, self-
regulatory processes can modify the number and size of the systems and the
supply of resources can change in time. In the competing gangs example
one expects that the number of costumers per drug-seller evolves in time
taking into account the increase of desertions during high violence periods
(corresponding to low number of customers per drug-seller) and increase of
recruitment during low violence periods (corresponding to high number of
customers per drug-seller). Other questions remain open in this study. How
the trajectories of the model parameters depend on the selection rules and
on the mutation rate, on the size and number of systems and on the ambient
conditions? What are the spatio-temporal patterns if the model is extended
to a spatially structured environment?
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Figure 1: The average production rate 〈υ〉 per unit and per duty cycle τ for
the four types of systems M, D, T and MDT (see text) as function of the
external supply rate of inhibitors İext. The adopted parameters are Ne = 120,
τ = 100, τI = 5τ , p0 = 1/τ and α = 1/4. The substrate supply is kept fixed
to Ṡ = 12. A simulation for 200 τ was performed for each value of İext.

13



Figure 2: The average production rates for the four types of systems M, D,
T and MDT as a function of unpolluted period τpol for < İext >= 1. Model
parameters as in Fig. 1.
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Figure 3: The average production rate 〈υi〉 of the 20 competing systems as
a function of the critical averaged production υcri (see text). The model
parameters are the same as in Fig. 1 and τave = 10 τ . Half of the systems
(black curves) have their units working in isolation (M-systems) and the other
half (grey curves) have their units working in cooperative arrangements of
four units (T-systems). The curve labelled υtot corresponds to the total
average production and the curve labelled σ(υtot) to its standard deviation.
In the region in between the two diagonal dashed lines the condition (iii) is
fullfilled. The Roman numbers label the 5 different regimes displayed by the
systems.
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Figure 4: Evolution of the monomer fraction of the population during 1500
generations for the three labelled values of the substrate supply Ṡ. The
thick continuous curve shows the evolution of the monomer fraction fM =
∑

f i
M/Ng of the population, the dotted curve with large fluctuations shows

the monomer fraction of the system with performance ranked at half way
(fM)med, the dots indicate the monomer fraction of the systems that have
released inhibitors during the simulation of a generation, and the almost
horizontal thin curve shows the total average production υtot. The model
parameters are Ng = 20, Ne = 120, τ = 100, τI = 6 τ , τave = 10 τ , p0 = 1/τ ,
α = 1/4, and pcross = pmutate = 0.05.
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Figure 5: The average fM of the mean monomer fraction fM of the population
for the last 1400 generations in 5 simulations as function of the supply rate
Ṡ. The dashed (fM,top5 vs Ṡ) and the dotted (fM,bot5 vs Ṡ) curves show
respectively the corresponding averages for the five systems with best and
worst performances in each generation. Model parameters as in Fig. 4.
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Figure 6: The average 〈υcri〉 of υcri =
∑

υi
cri/Ng in the 5 × 1400 generations

as function of the supply rate Ṡ. The dashed (〈υcri,top5〉) and the dotted
(〈υcri,bot5〉) curves show respectively the corresponding averages for the five
systems with best and worst performances in each generation. The long
dashed diagonal line indicates the maximum average production per unit
and per cycle. Model parameters as in Fig. 4.
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