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Abstract. The phenomena of synchronization and nontrivial collective behavior
are studied in a model of coupled chaotic maps with random global coupling. The
mean field of the system is coupled to a fraction of elements randomly chosen at
any given time. It is shown that the reinjection of the mean field to a fraction of
randomly selected elements can induce synchronization and nontrivial collective
behavior in the system. The regions where these collective states emerge on the
space of parameters of the system are calculated.

There is much current interest in the investigation of collective properties of complex networks
of interacting nonlinear elements [1]. As a model to study some minimal conditions for the
emergence of collective behavior in a chaotic network, we consider the coupled map system

xit+1 =

{
(1− ε)f(xit) + εht, with probability p,

f(xit), with probability 1− p, (0.1)

where xit (i = 1, 2, . . . , N ; N = system size) gives the state of the ith element at discrete time
t; ε is the coupling strength, f is a map defining the local dynamics, and

ht =
1

N

N∑
i=1

f(xit) (0.2)

is the instantaneous mean field of the system that provides a global coupling. The parameter
p is the probability of connection of an element to the mean field at time t. Thus the average
fraction of globally connected elements at any given time is p.
As local dynamics in Eq. (0.1) we shall consider the logarithmic map f(x) = b+ log |x| [2],

where b is a real parameter and x ∈ (−∞,∞). This map exhibits robust chaos, with no periodic
windows and no separated chaotic bands, in the parameter interval b ∈ [−1, 1].
A synchronized state at time t is defined by the condition xit = x

j
t ,∀i, j, in which case the

dynamics is described by the single map xt+1 = f(xt). The synchronization of the elements
in the network can be characterized by the time-average 〈σ〉 of the instantaneous standard
deviations σt of the distribution of site variables x

i
t, defined as

σt =

[
1

N

N∑
i=1

(
f(xit)− ht

)2]1/2
. (0.3)
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Fig. 1. Left vertical axis: bifurcation diagram of ht
as a function of p. For each value of p, the mean
field was calculated at each time step during a run
starting from random initial conditions on the local
maps, uniformly distributed on the interval [−8, 8],
after discarding the transients. The regions where col-
lective states occur are labeled T (turbulent), NTCB
(nontrivial collective behavior), CB (chaotic bands),
S (synchronization). Right vertical axis: 〈σ〉 vs p, con-
tinuous line. Fixed b = −0.7, ε = 0.4; size N = 105.

Figure 1 shows the quantity 〈σ〉 (right vertical axis) as a function of the probability p, for fixed
values of b and ε. There is a threshold value pc � 0.75 at which 〈σ〉 = 0 (within a precision of
10−8 in our calculations), indicating that the elements are synchronized. The range of p where
chaotic synchronization takes place is indicated by the label S. For p = 1, the system Eq. (0.1)
becomes a globally coupled map network [3] which is known to synchronize. However, Fig. 1
reveals that the reinjection of a global coupling function to a fraction of randomly selected
elements in the system is enough to achieve synchronization. The critical value pc for the
emergence of synchronization depends on the parameters of the system, as shown in Fig. 2.
The instantaneous mean field of the system ht can characterize more complex collective

behaviors arising in the system Eq. (0.1). When b ∈ [−1, 1], the elements in the network are
chaotic and desynchronized. However, for some parameter values, ht reveals the existence of
global periodic attractors. Figure 1 shows the bifurcation diagram of ht (left vertical axis) as
a function of p, for fixed b and ε. In this representation, collective periodic states at a given
value of the parameter p appear as sets of small vertical segments which correspond to intrinsic
fluctuations of the periodic orbits of the mean field.

Fig. 2. Boundaries on the parameter plane (p, ε) separating
different collective states of the system. Labels correspond
to those in Fig. 1. Fixed b = −0.7. Size N = 105.

In the region labelled by T (turbulent) in Fig. 1, ht follows a normal statistical behavior
around a mean value (a collective fixed point) with fluctuations reflecting the averaging of N
completely desynchronized chaotic elements. Increasing the probability of connection p induces
a transition to periodic collective states occurring in the chaotic range of the local dynamics:
a pitchfork bifurcation takes place from a collective fixed point to a collective period-two state
(a state for which the time series of ht alternatingly moves between the corresponding neighbor-
hoods of two separate values). Collective states of higher periodicity arise by further increasing
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p: global periodic attractors of period 2, 4, 8, and 16 are possible in this system. The amplitude
of the collective periodic motions manifested in ht do not decrease with an increase in the sys-
tem size N . As a consequence, the variance of ht itself does not decay as N

−1 with increasing N
but rather it saturates at some constant value related to the amplitude of the collective period.
This is a phenomenon of nontrivial collective behavior, where macroscopic quantities in a spa-
tiotemporal dynamical system exhibit ordered evolution coexisting with local chaos [4]. Note
that the emergence of collective periodic behavior in this system cannot be attributed to the
presence of periodic windows in the local dynamics since the logarithmic map possesses robust
chaos for b ∈ [−1, 1]. Figure 1 indicates with the label NTCB the interval of p where nontrivial
collective behavior arises in this system. Before crossing the boundary of the synchronization
region, the collective states described by ht take the form of chaotic bands. These states are
labelled CB (collective bands) and they consist of the motion of chaotic elements that maintain
some coherence.
Figure 2 shows the regions where the different collective states of the system Eq. (0.1)

occur on the space of parameters (p, ε). These regions are separated by stability boundaries
which have been numerically calculated. For p = 1, Fig. 2 yields the intervals of stability of
the collective states S, NTCB and CB corresponding to globally coupled logarithmic maps and
which have been previously found [5]. Figure 2 shows that those collective states can also emerge
when a fraction of randomly selected maps are connected to the mean field and appropriate
values of the coupling strength are employed.
In summary, we have shown that a reinjection of a global coupling function to a fraction

of randomly selected chaotic elements in a dynamical network can induce synchronization and
nontrivial collective behavior in the system. This procedure may have practical applications in
the control of spatiotemporal systems. These results may be relevant in some biological and
social contexts where the global information is often available only to a portion of agents in
those systems.
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5. M.G. Cosenza, J. González, Prog. Theor. Phys. 100, 21 (1998)




