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Abstract. We present a model in which we investigate the structure
and evolution of a random network that connects agents capable of
exchanging wealth. Economic interactions between neighbors can occur
only if the difference between their wealth is less than a threshold value
that defines the width of the economic classes. If the interchange of
wealth cannot be done, agents are reconnected with another randomly
selected agent, allowing the network to evolve in time. On each inter-
action there is a probability of favoring the poorer agent, simulating
the action of the government. We measure the Gini index, having real
world values attached to reality. Besides the network structure showed
a very close connection with the economic dynamic of the system.

1 Introduction

Within the modeling of collective behavior, a strong interest in the problem of struc-
ture formation in networks of interacting agents has been developed, such as in models
of market, scattering of rumors, opinions formation, etc. Networks consist of a number
of nodes or agents (individuals, countries, firms of investors, banks, etc.) connected
and related by links. The particular pattern of connections specifies the topology of the
network, such connections can be established, removed or change its strength as the
system evolves over time. When the structure of the network changes because of
the dynamic of the nodes states and therefore there is a coupling between topology
and states then it is a coevolutionary system or adaptive network.
Coevolutionary systems emerge in many different applications and have been stud-

ied in epidemic propagation [1,2], technical distribution networks [3,4], neural net-
works [5,6], models of social dynamics [7–9], game theory [10], ecological research
models [11,12], chemical networks [13,14].
This paper proposes a microscopic model of wealth exchange between agents

located on a dynamical network where the structure formation and wealth distri-
bution are characterized and studied. As coevolutionary system, the model can be
classified using the general framework for systems with coevolution between topology
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and dynamics [15] as a system with rewiring process type DR, i.e. a model where the
actions of disconnection and reconnection are respectively based on dissimilarity (D)
and randomness (R) mechanisms.
Many works have been directed to formulating similar models to the proposed

here: Pianegonda et al. [16] presented a model of patterns of redistribution of wealth
on a one-dimensional network. Iglesias et al. [17] studied the distribution of wealth in
an agent-based model with an element of risk aversion on each agent. Laguna et al.
[18] looked at the effect of social stratification in the distribution of wealth in a system
of economic agents with interactions that are limited to only interact within the same
economic class. Following this direction, Herrera et al. [19,20] added to the concept of
stratification of Laguna et al. the concepts of neighborhood and spatial location. Also,
there are some models [21,22] that have studied the influence of network topology on
economic dynamics.
The proposed coevolutive model of wealth exchange is presented in Sect. 2.

Results are shown in Sect. 3 where the Gini index is used as an order parameter to
characterize the wealth distribution and network structure is characterized through
two order parameters: the fraction of agents on the largest component of the net-
work and the network modularity. The emergence of networks with communities are
shown, and their relation with the Gini index is explained through a phase diagram.
The conclusions are presented in Sect. 4.

2 The model

The model proposed consists of N agents that can exchange wealth with their neigh-
bors. The exchange of wealth is based on the model of interaction rules proposed by
Herrera et al. [19]. Nevertheless, unlike this one, here the agents form a dynamic net-
work, whose undirected links can be rewired over the time. Each agent i = 1, 2, . . . , N ;
is characterized at time t by its wealth wi(t) and the set of its ki(t) neighbors ηi(t).
The initial value of wealth is wi(0) = 1, ∀ i and its set of neighbors, ηi(0), is ob-
tained from the network, which at t = 0, is a random network type Erdös-Renyi [23]
with a degree k̄ = N−1

∑
i ki(0). In addition, each agent has a risk aversion βi that

characterizes how much the fact that the agent i is not willing to risk in an eco-
nomic transaction, thus the fraction of wealth that the agent i is willing to risk on
each transaction is (1− βi). For each simulation the values βi ∈ [0, 1] are distributed
randomly and remain fixed during all the time.
At each instant t, an agent i is chosen randomly from the N agents on the network.

Then a second agent j is chosen from the neighborhood of i, i.e., j ∈ ηi, randomly as
well. If the normalized wealth difference between them does not exceed a threshold
u, that is

|wi(t)− wj(t)|
max(wi(t), wj(t))

< u, (1)

the wealth exchange is performed. Note that in this model the parameter u measures
the width of economic classes and the exchange of wealth can only occur between
neighboring agents that belong to the same economic stratum.
But if the chosen agents i and j are not of the same economic class, i.e., the

inequality of Eq. (1) is false, then a rewiring process is fired, disconnecting the agent
i from j and connecting it with another randomly chosen agent, j∗, that was not in
the neighborhood of i. As the links of the network are undirected, when i and j are
disconnected, the agent j is taken out from the set ηi, as well as i is also extracted
from the set ηj . And by connecting i to j

∗ each agent is added to the neighbors set
of the other.
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For the wealth exchange it is established that no agent can gain more than the
invested quantity, so the amount to be exchanged is given by

dw = min [(1− βi)wi, (1− βj)wj ] . (2)

To emulate the public policies which aim is contribute with wealth redistribution, in
the model there is a probability p ≥ 1/2 to favour the poorer of the two interacting
agents, defined as

p =
1

2
+ f × |wi(t)− wj(t)|

wi(t) + wj(t)
, (3)

where f is a parameter that ranges from f = 0, for an equal probability of favoring
each agent, to f = 1/2, where the probability of favoring the poorer is maximum.
Thus, in each interaction the poorer agent has a probability p to be favored and
increase dw its wealth and the richer agent to lose this amount of its wealth, while
(1− p) is the probability that otherwise happens. In this way, the total wealth of the
system is conserved, that is W =

∑N
i=1 wi(t) =

∑N
i=1 wi(0) ∀i.

3 Results

The results shown in this section were done with undirected networks of N = 104

agents initially connected randomly. The degree of the network, i.e. the average num-
ber of neighbors per agent, is k̄ = 16. The simulation time was T = 109 iterations.
Each point corresponds to the average value of 5 realizations.
Gini index is used as order parameter as a way to characterize the statistical

properties of the wealth distribution in the system. This quantity measures the degree
of inequality in an economic system and is given by

G =

∑N
i=1

∑N
j=1 |wi − wj |
2WN

. (4)

In a large population the Gini index can take values between 0 and 1. A fully equitable
wealth distribution, where wi = wj ∀ i, j; corresponds to G = 0, while a totally
unequal distribution, where one agent has all the richness of the system and the
others have no wealth at all, gives a Gini index G = 1.
Figure 1 shows the value of the Gini index in the parameters space (u;f). As might

be expected, the Gini index reaches its maximum values when the parameter f = 0,
i.e. when there are no public politics of wealth redistribution. In this figure it is also
appreciated that for each value of the parameter u there are some values of the public
politics of wealth redistribution for which the Gini index begins to decay, fG. Note
that the values of fG decrease while u increases until reach fG = 0 when u = 1.
To understand the behavior of the Gini index in terms of interactions between

agents, the network of agents is characterized by means of two order parameters. The
first one is the fraction of agents in the largest network component S, where network
component is defined as a subset of the network in which any two agents are connected
to each other by paths of links. Figure 2 shows the fraction of agents in the largest
network component in the parameters space (u;f). It can be appreciated a region, for
small values of f , where S ≈ 1, i.e., where almost all agents are interconnected on
a single network component. There is a second region of the space (u;f) where the
values of S are close to zero and grow smoothly when the value of u increases until
to reach relatively high values when u = 1, i.e. when the concept of economic classes
vanish. This means that any couple of agents that are neighboring each other can
always exchange their wealths, since the inequality of Eq. (1) is always true.
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Fig. 1. Gini index G as a function of the parameters u and f . The parameter u represents the
width of the economic classes while the public politics of wealth redistribution are represented
by f .
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Fig. 2. Fraction of agents in the largest component of the network, S, in the parameters
space (u;f).

The points fS(u), where the values of S change abruptly, define the border be-
tween these two regions. Note that for any value of the width of the economic classes,
u, considered in our model, the policy of redistribution of wealth may result in a
fragmentation of the network of agents, and contrary to what might be expected the
value of fS(u), for wich the network is fragmented, decreases when increases the width
of the economic classes.
A second order parameter, the network modularity [24], is introduced to under-

stand what occurs to the network when it goes from to be connected to fragmented.
Modularity measures the tendency of agents to group into communities or modules.
Networks with a high modularity have many connections between nodes that are
within the same community, but few connections between nodes that are in different
communities. The modularity is given by

Q =
1

2Nk̄

∑
i,j

(
aij − kikj

2Nk̄

)
δ(ci, cj), (5)
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Fig. 3. Network modularity, Q, in the parameters space (u;f).

where, k̄ is the network degree; aij is the (i, j) component of the adjacency matrix of
the network, with aij = 1 if j ∈ ηi and aij = 0 if j /∈ ηi; δ is the Kronecker delta; and
ci is the characterizer that identify the community to which the agent i belongs. In
order to set the values of each characterizer ci needed to obtain the value of Q, the
communities detection algorithm proposed by Blondel et al. [25] is used.
Figure 3 shows the order parameters Q in the parameter space (u;f). Similarly

to Fig. 2, this figure shows the presence of two well defined regions. The first region,
which corresponds to relatively large values of modularity, has a ridgeline (fQmax(u))
and extends from the axis u to the line fQ(u) where values of modularity fall suddenly.
The second region is fairly flat and runs from the border, defined by fQ(u), to the
largest value of the wealth redistribution politics, f = 0.5; and as what happens to
the order parameter S, the value of Q grows smoothly when the value of u increases
until reach its maximum values when u = 1.
In order to understand the relationship between the order parameters G, S and

Q, the cross sections made on the diagonal of the parameters space (u;f) are shown
in Fig. 4 (see dashed lines in Figs. 1, 2 and 3) with the surfaces G(u, f), S(u, f) and
Q(u, f). The light gray zone (phase I) indicates the region for which all agents are
connected in a single component and the wealth distribution is totally unequal. In
the other hand, parameter values u > 0.7 (phase II) correspond to the zone where
G < 1. At the same time, this zone can be divided into two sub-zones. In the first
one, labeled IIa, the Gini index decreases, starting from G = 1, and networks are
fragmented. Note that the value of the parameter u where the Gini index value be-
gins to decrease is the same value for which the fraction of agents in the largest
component and the modularity of the network fall abruptly. In other words, when the
width of the economic classes u increases (in this figure the redistribution politics f
also increases) there is a phase transition from a totally unequal to a more equitable
distribution of wealth, achieved at the expense of the fragmentation of the economic
network. The second sub-zone (IIb) corresponds to the region where the Gini index
reaches values that fit to those observed in most countries (G ∈ [0.2; 0.70]) and the
world as a whole, that has been estimated G ∈ [0.60; 0.63] [26]. In this region we can
see how when the width of the economic classes increases, the Gini index decreases,
while the modularity increases as well as it does the fraction of agents in the largest
component which reaches up to S = 1 when u = 1.
To characterize the statistical properties of the system, in Fig. 5 it is shown

the phase diagram of the system on the parameters space (u;f). There are two zones
where modularity is significantly high, revealing the presence of communities of agents
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Fig. 4. Cross sections of the surfaces G(u, f) (open squares), S(u, f) (solid triangles) and
Q(u, f) (open circles); made on the diagonal of the space (u;f). The diagonal is given by
f(u) = 5/4(u−0.6). Two zones are highlighted: Absolute inequality with connected networks
(light gray) and inequality similar to those observed in the world with networks that go from
fragmented to connected (dark gray).
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Fig. 5. Phase diagram in the parameters space (u;f). The critical boundary between phases I
and II can be established either by the critical values with any of the three order parameters:
fG (solid line) fS (border of the light gray area) or fQ (solid circles). Open circles represent
the ridgeline values of the modularity, fQmax . The region in which the Gini index is consistent
with the values observed in the world is shown in dark gray (IIb). Dashed line correspond
to the cross section used to Fig. 4.

in the network large enough to be detected by the algorithm proposed by Blondel
et al. [25].
The first zone matches with the phase I, where, even though the order parameters

G and S do not change significantly, the value of Q does, reaching a maximum and
then decaying before reaching the critical boundary, fQ. These changes in the values
of Q indicate an agents rearrangement with the subsequent formation of several com-
munities on the network when the parameters f and u change. Figure 6 shows two
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Fig. 6. Snapshot of the structure of networks of active agents for two different values of
parameters in phase I. Left: u = 0.68 and f = 0.1, correspond to the point where Q reaches
its maximum in Fig. 4. Right: Parameters u = 0.71 and f = 0.125 are set on the critical
point between phases I and II. Nodes size represents the agents wealth in logarithmic scale.
Snapshot are done with the help of Network Workbench [27].

snapshot of the structure that are formed in the network of agents for two different
points in the parameter space (u;f). In both snapshot are shown active links, i.e. those
for which Eq. (1) is true, and agents connected through these links (approximately
500 active agents). The wealth of each agent is represented by its size in logarithmic
scale.
It can be appreciated in the left snapshot, which corresponds to the diagonal

point in the plane (u;f) where Q is maximum, a connected network with five commu-
nities of active agents with similar wealth. In contrast, in the right snapshot, which
corresponds to the point of transition between phases I and II, the network of active
agents is no longer connected, but the modularity is maintained relatively high by the
presence of unjoined communities. At this point, where the communities disappear
or become smaller and disconnected, the random structure of the network of inactive
agents is imposed and therefor the modularity falls, the network gets fragmented and
exchange of wealth declines.
In the phase II, characterized by a decrease in the Gini index when the value of

the parameters (f , u or both) increases, network fragmentation S and modularity Q
achieve their minimum values, as shown in Fig. 4. Beyond this point, by increasing
the values of f or u, both order parameters S and Q grow indicating that agents have
been rearranged and creating structures within the network. This process continues
until connected networks with relatively high levels of modularity, Q > 0.1, emerge
around the point (u;f) = (1.0; 0.5).
Note that at this point all links are active since Eq. (1) is true for all pairs of

neighbors. In other words, networks of active agents are composed by N = 104 agents
linked together through N × k̄ = 160000 links, all active. performing a visual in-
spection of a network of this size in order to observe communities is not possible,
therefore, to see the structures that arise in these conditions, Fig. 7 shows a network
with k̄ = 4 and N = 500 agents, that is a similar size of the two networks shown in
Fig. 6. The presence of communities can be clearly appreciated in the figure although
they are not as well defined as the communities shown in Fig. 6. It may also be noted
that in this case the diversity of wealth of agents (size of nodes) is larger within
each community. However, if considering the system as a whole, the wealth diversity
is smaller, which is consistent with the values obtained for the Gini index at this
point.
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Fig. 7. Snapshot of the network structure network for u = 1.0 and f = 0.5 Network size
N = 500 and degree k̄ = 4. Nodes size represents the agents wealth in logarithmic scale.

4 Discussion

Using the concepts of distribution of wealth among agents with risk aversion [17], eco-
nomic stratification [18] and spatially localized interactions [19], a wealth exchanging
multi-agent model was implemented where agents can also change their environment,
i.e. a co-evolutionary dynamic system where agents can change their neighborhood
and these topological changes have effects on the dynamics of the agents. The model
can fit into the general framework for systems with coevolution between topology
and dynamics [15] as a DR process, i.e. a process with a rewiring dynamic where
disconnect actions are governed by a dissimilarity mechanism (D) and reconnection
actions are governed by a random mechanism (R).
As might be expected, increased redistribution policy of the government, repre-

sented by the parameter f , achieves a more equitable distribution of wealth, i.e., Gini
index, G, decreases. As is shown in Fig. 5, this behavior allows to define two phases
in the parameter space (u;f): Phase I, where G ≈ 1, and phase II, where G < 1. Is
appreciated that the critical boundary between phases I and II, fG(u), depends on
the parameter that controls the width of the economic classes, u. As the economic
classes vanish a less aggressive redistribution policy is required for the transition from
phase I to phase II.
Observing the behavior of the order parameters S and Q, both related to the

structure of the network and not with the wealth of agents such as G, highlights
the fact that just at the critical boundary their values change significantly which
leads to conclude that the phase transition of the system is related to the network
fragmentation and the vanishing of community structure in it, characterized through
S and Q respectively.
Finally, the results show two zones in the phase diagram of the system where com-

munities of agents emerge spontaneously. The first zone coincides with the phase I of
system where there is maximum inequity in the distribution of wealth. The commu-
nities in this zone, composed of elements with similar wealth, are chained one after
another sorted by the richness of agents.
The second zone where communities emerge is in Phase II, specifically within the

region where the Gini index fits the values currently observed in the world. Here,
unlike what is seen in the previous zone, the variety of wealth of the agents that
compose each community is large and communities seem to have no order within the
network.



Advanced Computational and Experimental Techniques in Nonlinear Dynamics 9

In this region of the parameters space the coevolutionary model of wealth ex-
change proposed gives as results connected networks in which spontaneously emerge
communities of agents with diverse wealths and Gini index values similar to those
seen currently in the world.

This work is supported partly by Grant No. C-1804-12-05-B CDCHTA, Universidad de Los
Andes, Venezuela.
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